• 食品科学与工程领域高质量科技期刊分级目录第一方阵T1
  • Scopus
  • FSTA
  • 北大核心期刊
  • 中国核心学术期刊RCCSE
  • DOAJ
  • JST China
  • 中国精品科技期刊
  • 中国农业核心期刊
  • CA
  • WJCI
  • 中国科技核心期刊CSTPCD
  • 中国生物医学SinoMed
中国精品科技期刊2020 食品青年科学家峰会

碘比色法测定高粱中直链淀粉和支链淀粉的方法探讨

唐云 闫海彦 赵亚雄 郇丹 宗文文 宋菲红

唐云,闫海彦,赵亚雄,等. 碘比色法测定高粱中直链淀粉和支链淀粉的方法探讨[J]. 新宝登录入口(中国)有限公司,2023,44(13):272−280. doi:  10.13386/j.issn1002-0306.2022070293
引用本文: 唐云,闫海彦,赵亚雄,等. 碘比色法测定高粱中直链淀粉和支链淀粉的方法探讨[J]. 新宝登录入口(中国)有限公司,2023,44(13):272−280. doi:  10.13386/j.issn1002-0306.2022070293
TANG Yun, YAN Haiyan, ZHAO Yaxiong, et al. Determination of Amylose and Amylopectin in Sorghum by Iodine Colorimetric Method[J]. Science and Technology of Food Industry, 2023, 44(13): 272−280. (in Chinese with English abstract). doi:  10.13386/j.issn1002-0306.2022070293
Citation: TANG Yun, YAN Haiyan, ZHAO Yaxiong, et al. Determination of Amylose and Amylopectin in Sorghum by Iodine Colorimetric Method[J]. Science and Technology of Food Industry, 2023, 44(13): 272−280. (in Chinese with English abstract). doi:  10.13386/j.issn1002-0306.2022070293

碘比色法测定高粱中直链淀粉和支链淀粉的方法探讨

doi: 10.13386/j.issn1002-0306.2022070293
详细信息
    作者简介:

    唐云(1974−),男,本科,高级工程师,研究方向:酿酒生产工艺与白酒质量管控,E-mail:ty@jinhuijiu.com

    通讯作者:

    闫海彦(1994−),女,硕士,研究方向:食品检测分析,E-mail:767928507@qq.com

  • 中图分类号: O656.31

Determination of Amylose and Amylopectin in Sorghum by Iodine Colorimetric Method

  • 摘要: 目的:高粱中淀粉含量与其衍生物的品质密切相关,对其中直链淀粉(Am)和支链淀粉(Ap)含量的测定很有必要。本文采用碘比色法对高粱籽粒中淀粉(Am、Ap)含量的进行测定,探讨最佳预处理与检测方法。方法:以高粱籽粒中的Am与Ap为主要研究对象,比较碘比色法中的三种检测方法,即:单波长混标法(I)、双波长单标法(II)及双波长混标法(III),通过精密度、检出限、定量限等对三种测定方法进行了一系列的方法学验证,并对预处理及测定过程中NaOH和KOH分散剂、糊化温度、糊化时间、乙酸和盐酸pH调节剂、碘试剂用量和显色时间进行了比较优化,最后通过重复性验证、回收率验证和常见谷物样品的测定验证了最佳方法的准确性。结果:三种方法的检出限和定量限均能满足实际样品的测定范围需求,其中检出限:Am均≤0.55 mg/L,Ap均≤2.75 mg/L,定量限:Am均≤1.65 mg/L,Ap均≤8.33 mg/L;样品准确率实验发现,混标溶液标曲得到的误差绝对值较小(0.13%),但单标溶液标曲误差较大(7.47%),因此需要选用混标溶液配制标曲;高粱籽粒中淀粉的最佳预处理与测定条件是:以NaOH作分散剂,以乙酸或盐酸为pH调节剂,70 ℃糊化10~20 min,采用标准碘试剂浓度,显色20~30 min内测定结果较为稳定、准确;测定方法中,双波长混标法(III)所测定的Am、Ap及总淀粉含量准确,且与理论粗淀粉含量吻合,重复性和回收率(80%~120%)高。结论:碘比色双波长混标法是测定高粱籽粒中直链淀粉和支链淀粉含量的最佳测定方法,可用于实际样品的测定。
  • 图  1  双波长法测定Am、Ap的全谱图

    Figure  1.  Full spectrum of Am and Ap determined by dual-wavelength method

    图  2  KOH(左)和NaOH(右)分散高粱溶液与碘络合后的颜色

    Figure  2.  Color of KOH (left) and NaOH (right) dispersed sorghum solution complexed with iodine

    图  3  糊化温度对吸光度/St含量的影响

    Figure  3.  Influence of gelatinization temperature on absorbance/total starch content

    注:a:方法I;b:方法II;c:方法III;d:方法II-St质量;e:方法III-St质量。

    图  4  糊化时间对高粱淀粉吸光度值的影响

    Figure  4.  Effect of gelatinization time on absorbance value of sorghum starch

    注:a:方法I;b:方法II;c:方法III;图5图6同。

    5  碘试剂用量对高粱淀粉吸光度值的影响

    5.  Effect of iodine reagent dosage on absorbance values of sorghum starch

    图  6  显色时间对高粱淀粉吸光度值的影响

    Figure  6.  Influence of color development time on absorbance value of sorghum starch

    表  1  三种方法绘制标曲的Am和Ap用量

    Table  1.   Amounts of Am and Ap for plotting standard curves by three methods

    序号方法
    IIIIII
    Am(mL)Ap(mL)Am(mL)Ap(mL)Am(mL)Ap(mL)
    105.000.302.0005.00
    20.254.750.502.500.504.50
    30.504.500.703.001.004.00
    41.004.000.903.501.503.50
    51.503.501.104.002.003.00
    62.003.001.304.502.502.50
    7///5.003.002.00
    8////3.501.50
    下载: 导出CSV

    表  2  三种方法测得的标准曲线

    Table  2.   Standard curves measured by three methods

    方法AmAp
    Iy=0.02x+0.1586R2=0.9973//
    IIy=0.0186x−0.00254R2=0.9999y=0.01835x+0.0372R2=0.9968
    IIIy=0.00258x+0.0385R2=0.9963y=0.00275x−0.00302R2=0.9987
    下载: 导出CSV

    表  3  三种方法测定标准样品的准确性分析

    Table  3.   Accuracy analysis of standard samples determined by three methods

    配制样品方法I
    (mg/L)
    准确率
    (%)
    方法II
    (mg/L)
    准确率
    (%)
    方法III
    (mg/L)
    准确率
    (%)
    30% Am29.30297.6733.458111.5229.78299.27
    20% Am19.67798.3923.193115.9719.93699.68
    10% Am10.339103.3912.283122.8310.021100.21
    70% Ap70.698100.9867.2896.1170.056100.08
    80% Ap80.323100.4078.55398.1980.015100.02
    90% Ap89.66199.6290.189100.2189.94899.94
    平均值/100.08/107.47/99.87
    误差(%)/0.08/7.47/-0.13
    下载: 导出CSV

    表  4  三种方法对10份高粱样品淀粉含量的测定比较(%)

    Table  4.   Comparison of starch content of 10 sorghum samples determined by three methods (%)

    序号方法I方法II方法III
    AmApStAmApStAmApSt
    112.8387.1710016.0583.9593.5822.7377.2766.09
    213.4386.5710015.6184.3994.8219.5780.4375.64
    313.2386.7710012.6287.3895.7317.6982.3168.27
    413.1386.8710015.5784.4390.4921.8178.1962.89
    512.8387.1710015.4984.5195.5521.8078.2067.89
    612.8387.1710015.7384.2794.0922.3177.6966.34
    712.5387.4710015.5484.4693.8722.0677.9466.13
    812.6387.3710015.1484.8693.4421.5478.4665.69
    913.2386.7710013.8986.1186.1719.2880.7262.09
    1013.0386.9710016.5383.4788.8922.2577.7566.03
    平均值12.9787.0310015.2284.7892.6621.1078.9066.71
    SD0.290.290.001.141.143.131.661.663.68
    RSD2.220.330.007.481.343.387.872.115.52
    检出限(mg/L)0.49//0.552.75/0.532.35/
    定量限(mg/L)1.47//1.658.33/1.617.13/
    注:Am和Ap表示占淀粉总量的百分比;St表示占试样的百分比;表9同。
    下载: 导出CSV

    表  5  NaOH和KOH分散高粱样品测定Am,Ap的含量

    Table  5.   Determination of Am and Ap in NaOH and KOH dispersed sorghum sample

    方法分散剂种类
    NaOHKOH
    Am(%)Ap(%)Am(%)Ap(%)
    方法I15.5484.466.2493.76
    方法II16.9083.103.7596.25
    方法III15.7584.256.2593.75
    下载: 导出CSV

    表  6  溶液pH对吸光度值的影响

    Table  6.   Influence of solution pH value on absorbance value

    名称pH方法I方法II
    (Am)
    方法II
    (Ap)
    方法III
    (Am)
    方法III
    (Ap)
    参比溶液3.2700000
    样品溶液11.65/////
    乙酸(1 mL,1 mol/L)4.650.3370.1700.1640.1710.164
    乙酸(4 mL, 1 mol/L)3.840.3400.1630.1720.1630.172
    盐酸(0.5 mL, 1 mol/L)3.780.3390.1630.1710.1630.169
    下载: 导出CSV

    表  7  高粱样品中淀粉含量的重复性测定

    Table  7.   Repeatability of starch content in sorghum samples

    样品名称重复次数Am(mg)Ap(mg)St(mg)Ap/Am
    1号样112.19±0.2855.42±0.7667.6±0.474.55±0.33
    210.88±0.4760.07±0.5470.95±0.635.52±0.58
    310.99±0.3556.97±0.3867.95±0.575.18±0.40
    2号样112.84±0.2367.82±0.4780.66±0.555.28±0.26
    212.08±0.1568.59±0.5980.89±0.625.68±0.24
    312.3±0.1862.39±0.3974.47±0.735.07±0.21
    3号样113.28±0.3265.49±0.4478.77±0.584.93±0.30
    212.19±0.4471.69±0.5683.88±0.255.88±0.52
    312.30±0.3771.62±0.6383.92±0.315.82±0.45
    下载: 导出CSV

    表  8  高粱样品的加标回收率验证

    Table  8.   Verification of spiked recovery rate of sorghum samples

    样品加入量(mg/L)实测值(mg/L)回收率(%)
    Am0.250.271108.40
    1.00.87287.20
    6.05.44390.72
    Ap3.53.871110.60
    2019.74598.73
    7069.25398.93
    下载: 导出CSV

    表  9  不同谷物样品中Am、Ap和St含量

    Table  9.   Am, Ap and total starch contents in different grain samples

    样品Am(%)Ap(%)St(%)Ap/Am
    高粱14.01±0.4285.99±0.1869.86±0.476.14±0.32
    小麦18.85±0.2981.15±0.3263.51±0.264.31±0.25
    玉米12.14±0.4687.86±0.4283.36±0.397.24±0.35
    大米15.43±0.2884.57±0.5293.75±0.275.48±0.44
    下载: 导出CSV
  • [1] PAIANO V, BIANCHI G, DAVOLI E, et al. Risk assessment for the Italian population of acetaldehyde in alcoholic and non-alcoholic beverages[J]. Food Chemistry,2014,154:26−31. doi:  10.1016/j.foodchem.2013.12.098
    [2] 毛祥, 温雪瓶, 黄丹, 等. 5种常用酿酒高粱的主要成分及淀粉特性差异分析[J]. 中国酿造,2020,39(3):57−62. [MAO X, WEN X P, HUANG D, et al. Difference analysis on main components and starch properties in five commonly used liquor-making sorghum[J]. China Brewing,2020,39(3):57−62. doi:  10.11882/j.issn.0254-5071.2020.03.012

    MAO X, WEN X P, HUANG D, et al. Difference analysis on main components and starch properties in five commonly used liquor-making sorghum[J]. China Brewing, 2020, 39(3): 57-62. doi:  10.11882/j.issn.0254-5071.2020.03.012
    [3] NNAMCHI C I, OKOLO B N, MONEKE A N. Grain and malt quality properties of some improved Nigerian sorghum varieties[J]. Journal of the Institute of Brewing,2014,120:353−359.
    [4] SINGH H, SODHI N S, DHILLON B, et al. Physicochemical and structural characteristics of sorghum starch as affected by acid-ethanol hydrolysis[J]. Journal of Food Measurement and Characterization,2021,15(3):2377−2385. doi:  10.1007/s11694-020-00792-8
    [5] LONDONO-RESTREPO S M, RINCON-LONDONO N, CONTRERAS-PADILLA M, et al. Morphological, structural, thermal, compositional, vibrational, and pasting characterization of white, yellow, and purple Arracacha Lego-like starches and flours (Arracacia xanthorrhiza)[J]. International Journal of Biological Macromolecules,2018,113:1188−1197. doi:  10.1016/j.ijbiomac.2018.03.021
    [6] ESPITIA-HERNÁNDEZ P, CHAVEZ GONZALEZ M L, ASCACIO-VALDÉS J A, et al. Sorghum (Sorghum bicolor L.) as a potential source of bioactive substances and their biological properties[J]. Critical Reviews in Food Science and Nutrition,2022,62(8):2269−2280. doi:  10.1080/10408398.2020.1852389
    [7] JAISWAL S, BANSIRAR A, SINGH A, et al. Diversity in grain and wax characteristics of twelve cultivars of Indian sorghum[J]. Materials Today: Proceedings,2022,57:1933−1937. doi:  10.1016/j.matpr.2022.03.041
    [8] SOE HTET M N, WANG H, TIAN L, et al. Integrated starches and physicochemical characterization of sorghum cultivars for an efficient and sustainable intercropping model[J]. Plants,2022,11(12):1574. doi:  10.3390/plants11121574
    [9] 曹文伯. 高粱与酿酒[J]. 酿酒,1999(1):20−21. [CAO W B. Sorghum and winemaking[J]. Liquor Making,1999(1):20−21.

    CAO W B. Sorghum and winemaking[J]. Liquor Making, 1999, (1): 20-21.
    [10] ZHU Y, CUI B, YUAN C, et al. A new separation approach of amylose fraction from gelatinized high amylose corn starch[J]. Food Hydrocolloids,2022,131:107759. doi:  10.1016/j.foodhyd.2022.107759
    [11] JUNG S J, SONG Y B, PARK C S, et al. Different physicochemical properties of entirely α-glucan-coated starch from various botanical sources[J]. Food Science and Biotechnology,2022,31(9):1179−1188. doi:  10.1007/s10068-022-01113-z
    [12] NIETO-ORTEGA B, ARROYO J J, WALK C, et al. Near infrared reflectance spectroscopy as a tool to predict non-starch polysaccharide composition and starch digestibility profiles in common monogastric cereal feed ingredients[J]. Animal Feed Science and Technology,2022,285:115214. doi:  10.1016/j.anifeedsci.2022.115214
    [13] 叶沁, 赵紫薇, 徐明雅, 等. 基于中红外漫反射光谱技术测定精米中直链淀粉含量的研究[J]. 中国粮油学报,2018,33(2):115−119,127. [YE Q, ZHAO Z W, XU M Y, et al. Amylose content detection in polished rice based on diffuse reflectance fourier transform infrared spectroscopy[J]. Journal of the Chinese Cereals and Oils Association,2018,33(2):115−119,127. doi:  10.3969/j.issn.1003-0174.2018.02.019

    YE Q, ZHAO Z W, XU M Y, et al. Amylose content detection in polished rice based on diffuse reflectance fourier transform infrared spectroscopy[J]. Journal of the Chinese Cereals and Oils Association, 2018, 33(2): 115-119, 127. doi:  10.3969/j.issn.1003-0174.2018.02.019
    [14] 吴玉萍, 高云才, 徐昭梅, 等. 连续流动法测定新鲜烟叶中的直链淀粉和支链淀粉[J]. 云南大学学报,2018,40(2):315−320. [WU Y P, GAO Y C, XU Z M, et al. Determination of amylose and amylopectin of fresh tobacco by continuous flow method[J]. Journal of Yunnan University,2018,40(2):315−320.

    WU Y P, GAO Y C, XU Z M, et al. Determination of amylose and amylopectin of fresh tobacco by continuous flow method[J]. Journal of Yunnan University, 2018, 40(2): 315-320.
    [15] DHIR A, KAUR C, DEVI V, et al. A rapid single kernel screening method for preliminary estimation of amylose in maize[J]. Food Analytical Methods,2022,15:2163−2171. doi:  10.1007/s12161-022-02277-4
    [16] YU M, LIU B, ZHONG F, et al. Interactions between caffeic acid and corn starch with varying amylose content and their effects on starch digestion[J]. Food Hydrocolloids,2021,114:106544. doi:  10.1016/j.foodhyd.2020.106544
    [17] BUTARDO V M, SREENIVASULU N, JULIANO B O. Improving rice grain quality: State-of-the-art and future prospects[J]. Rice Grain Quality,2019,1892:19−55.
    [18] HUANG J, WANG Z, FAN L, et al. A review of wheat starch analyses: Methods, techniques, structure and function[J]. International Journal of Biological Macromolecules,2022,203:130−142. doi:  10.1016/j.ijbiomac.2022.01.149
    [19] CHAVAN P, SINHMAR A, NEHRA M, et al. Impact on various properties of native starch after synthesis of starch nanoparticles: A review[J]. Food Chemistry,2021,364:130416. doi:  10.1016/j.foodchem.2021.130416
    [20] MCCREADY R M, HASSID W Z. The separation and quantitative estimation of amylose and amylopectin in potato starch[J]. Journal of the American Chemical Society,1943,65(6):1154−1157. doi:  10.1021/ja01246a038
    [21] 中华人民共和国国家质量监督检验检疫总局. GB/T 15683-2008 大米直链淀粉含量的测定[S]. 北京: 中国标准出版社, 2008.

    The State General Administration of Quality Supervision, Inspection and Quarantine, PRC. GB/T 15683-2008 Determination of amylose content in rice[S]. Beijing: China Standards Press, 2008.
    [22] 中华人民共和国农牧渔业部. GB 7648-1987 水稻、玉米、谷子籽粒直链淀粉测定法[S]. 北京: 中国标准出版社, 1987.

    Ministry of Agriculture, Animal Husbandry and Fisheries of the Peoples Republic of China. GB 7648-1987 Determinatlon of amylase in grains of rice, maize and millet[S]. Beijing: Standards Press of China, 1987.
    [23] 江苏省质量技术监督局. DB 32/T 2265-2012 鲜食玉米中直链淀粉和支链淀粉含量的测定双波长分光光度法[S]. 江苏: 江苏省地方标准出版社, 2012.

    Jiangsu Provincial Bureau of Quality and Technical Supervision. DB 32/T 2265-2012 Determination of amylose and amylopectin content in fresh maize by dual wavelength spectrophotometry[S]. Jiangsu: Jiangsu Local Standards Press, 2012.
    [24] REDDAPPA S B, CHHABRA R, TALUKDER Z A, et al. Development and validation of rapid and cost-effective protocol for estimation of amylose and amylopectin in maize kernels[J]. 3 Biotech,2022,12(3):1−8.
    [25] SHAO Y, ZHU D, YU J, et al. Development of certified reference materials for the determination of apparent amylose content in rice[J]. Molecules,2022,27(14):4647. doi:  10.3390/molecules27144647
    [26] SONG Y H, SHI W L, ZHANG J, et al. Development and application of an efficient method for the amylose/amylopectin ratio determination in potato tubers[J]. Acta Horticulturae Sinica,2021,48(3):600.
    [27] OKPALA N E, ALORYI K D, AN T, et al. The roles of starch branching enzymes and starch synthase in the biosynthesis of amylose in rice[J]. Journal of Cereal Science,2022,104:103393. doi:  10.1016/j.jcs.2021.103393
    [28] DÍAZ E O, KAWAMURA S, ISHIZU H, et al. Non-destructive assessment of amylose content in rice using a quality inspection system at grain elevators[J]. Food Chemistry,2022,379:132144. doi:  10.1016/j.foodchem.2022.132144
    [29] 焦梦悦, 高涵, 王伟娜, 等. 四种测定直链淀粉和支链淀粉方法的比较[J]. 新宝登录入口(中国)有限公司,2019,40(12):259−264. [JIAO M Y, GAO H, WANG W N, et al. Comparison of four methods for the determination of amylose and amylopectin[J]. Science and Technology of Food Industry,2019,40(12):259−264. doi:  10.13386/j.issn1002-0306.2019.12.042

    JIAO M Y, GAO H, WANG W N, et al. Comparison of four methods for the determination of amylose and amylopectin[J]. Science and Technology of Food Industry, 2019, 40(12): 259-264. doi:  10.13386/j.issn1002-0306.2019.12.042
    [30] WANG J P, LI Y, TIAN Y Q, et al. A novel triple-wavelength colorimetric method for measuring amylose and amylopectin contents[J]. Starch-Stä rke,2010,62(10):508−516.
    [31] ZHU T, JACKSON D S, WEHLING R L, et al. Comparison of amylose determination methods and the development of a dual wavelength iodine binding technique[J]. Cereal Chemistry,2008,85(1):51−58. doi:  10.1094/CCHEM-85-1-0051
    [32] ZHU F. Structure, physicochemical properties, modifications, and uses of sorghum starch[J]. Comprehensive Reviews in Food Science and Food Safety,2014,13(4):597−610. doi:  10.1111/1541-4337.12070
    [33] 何洁, 闫飞燕, 黄芳, 等. 双波长法测定薯芋类农产品中直链淀粉和支链淀粉的含量[J]. 新宝登录入口(中国)有限公司,2022,43(7):303−309. [HE J, YAN F, HUANG F, et al. Determination of amylose and amylopectin contents in yam and taros by dual-wavelength spectrophotometry[J]. Science and Technology of Food Industry,2022,43(7):303−309. doi:  10.13386/j.issn1002-0306.2021070119

    HE J, YAN F, HUANG F, et al. Determination of amylose and amylopectin contents in yam and taros by dual-wavelength spectrophotometry[J]. Science and Technology of Food Industry, 2022, 43(7): 303-309. doi:  10.13386/j.issn1002-0306.2021070119
    [34] VAINIO K A. Determination of starch by iodine colorimetry[J]. Agricultural and Food Science,1968,40(2):60−66. doi:  10.23986/afsci.71700
    [35] JARVIS C E, WALKER J R L. Simultaneous, rapid, spectrophotometric determination of total starch, amylose and amylopectin[J]. Journal of the Science of Food and Agriculture,1993,63(1):53−57. doi:  10.1002/jsfa.2740630109
    [36] BATES F L, FRENCH D, RUNDLE R E. Amylose and amylopectin content of starches determined by their iodine complex formation[J]. Journal of the American Chemical Society,1943,65(2):142−148. doi:  10.1021/ja01242a003
    [37] 蒋兰. 酿酒高粱淀粉含量测定及性质研究[D]. 重庆: 重庆大学, 2013.

    JIANG L. Determination of starch content and properties of brewing sorghum[D]. Chongqing: Chongqing University, 2013.
    [38] 项丰娟, 苏磊, 张秀南, 等. 小麦淀粉的研究现状[J]. 食品研究与开发,2021,42(16):212−219. [XIANG F J, SU L, ZHANG X N, et al. Research status of wheat starch[J]. Food Research and Development,2021,42(16):212−219. doi:  10.12161/j.issn.1005-6521.2021.16.031

    XIANG F J, SU L, ZHANG X N, et al. Research status of wheat starch[J]. Food Research and Development, 2021, 42(16): 212-219. doi:  10.12161/j.issn.1005-6521.2021.16.031
    [39] 翟佳丽, 何睿. 大米中直链淀粉含量测定方法的比较[J]. 粮食加工,2017,42(3):24−26. [ZHAI J L, HE R. Comparison of methods for determination of amylose content in rice[J]. Grain Processing,2017,42(3):24−26.

    ZHAI J L, HE R. Comparison of methods for determination of amylose content in rice [J]. Grain Processing, 2017, 42(3): 24-26.
  • 加载中
图(7) / 表(9)
计量
  • 文章访问数:  29
  • HTML全文浏览量:  15
  • PDF下载量:  13
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-08-02
  • 网络出版日期:  2023-05-22
  • 刊出日期:  2023-07-01

目录

    /

    返回文章
    返回