Determination of Amylose and Amylopectin in Sorghum by Iodine Colorimetric Method
-
摘要: 目的:高粱中淀粉含量与其衍生物的品质密切相关,对其中直链淀粉(Am)和支链淀粉(Ap)含量的测定很有必要。本文采用碘比色法对高粱籽粒中淀粉(Am、Ap)含量的进行测定,探讨最佳预处理与检测方法。方法:以高粱籽粒中的Am与Ap为主要研究对象,比较碘比色法中的三种检测方法,即:单波长混标法(I)、双波长单标法(II)及双波长混标法(III),通过精密度、检出限、定量限等对三种测定方法进行了一系列的方法学验证,并对预处理及测定过程中NaOH和KOH分散剂、糊化温度、糊化时间、乙酸和盐酸pH调节剂、碘试剂用量和显色时间进行了比较优化,最后通过重复性验证、回收率验证和常见谷物样品的测定验证了最佳方法的准确性。结果:三种方法的检出限和定量限均能满足实际样品的测定范围需求,其中检出限:Am均≤0.55 mg/L,Ap均≤2.75 mg/L,定量限:Am均≤1.65 mg/L,Ap均≤8.33 mg/L;样品准确率实验发现,混标溶液标曲得到的误差绝对值较小(0.13%),但单标溶液标曲误差较大(7.47%),因此需要选用混标溶液配制标曲;高粱籽粒中淀粉的最佳预处理与测定条件是:以NaOH作分散剂,以乙酸或盐酸为pH调节剂,70 ℃糊化10~20 min,采用标准碘试剂浓度,显色20~30 min内测定结果较为稳定、准确;测定方法中,双波长混标法(III)所测定的Am、Ap及总淀粉含量准确,且与理论粗淀粉含量吻合,重复性和回收率(80%~120%)高。结论:碘比色双波长混标法是测定高粱籽粒中直链淀粉和支链淀粉含量的最佳测定方法,可用于实际样品的测定。Abstract: Objective: The content of starch was closely related to the derivative products of sorghum. It was very important to determination of the content of starch, including amylose (Am) and amylopectin (Ap) in sorghum. In this study, the content of Am and Ap was determined by the iodine colorimetry. And conditions of pretreatment and determination were optimized. Method: Using Am and Ap in sorghum as the main object, the content of starch was measured by the iodine colorimetry with different detection methods, including the single wavelength mixed standard method (I), the dual wavelength single standard method (II), and the dual wavelength mixed standard method (III). A series of methodological verifications, such as the precision, detection limit and quantification limit, were compared. And the conditions of pretreatment, such as NaOH and KOH dispersant, gelatinization temperature and time, acetic acid and hydrochloric acid pH regulator, dosage of iodine reagent and color rendering time were optimized. The repeatability verification recovery rate and the determination of common grain samples of the obtained method was also tested, which verified the accuracy of the method. Result: The detection limits and quantification limits of the three methods could meet the requirements of the actual sample measurement range, with detection limits of Am≤0.55 mg/L, Ap≤2.75 mg/L, quantification limits of Am≤1.65 mg/L, Ap≤8.33 mg/L. The absolute error of the accuracy experiments was 0.13% from the mixed standard solution calibration curve, the single standard solution calibration curve error was relatively large (7.47%), thus the mixed standard solution was better to prepare the calibration curve. The optimal preprocessing of sorghum: Using NaOH as the dispersant, the gelatinization temperature at 70 ℃ for 10~20 min, with acetic acid or hydrochloric acid as pH regulator, using standard iodine reagent concentration, controlling the coloring time at 20~30 min, the determination results were relatively stable and accurate. The total content of starch was consistent with the starch content in theory, and it had a good repeatability and recovery (80%~120%). Conclusion: In summary, the dual wavelength mixed standard method of iodine colorimetry was a best method for measuring the content of Am and Ap in sorghum, and it was more suitable for the determination of actual samples in crops.
-
Key words:
- amylose /
- amylopectin /
- iodine colorimetry /
- sorghum /
- analytical detection
-
表 1 三种方法绘制标曲的Am和Ap用量
Table 1. Amounts of Am and Ap for plotting standard curves by three methods
序号 方法 I II III Am(mL) Ap(mL) Am(mL) Ap(mL) Am(mL) Ap(mL) 1 0 5.00 0.30 2.00 0 5.00 2 0.25 4.75 0.50 2.50 0.50 4.50 3 0.50 4.50 0.70 3.00 1.00 4.00 4 1.00 4.00 0.90 3.50 1.50 3.50 5 1.50 3.50 1.10 4.00 2.00 3.00 6 2.00 3.00 1.30 4.50 2.50 2.50 7 / / / 5.00 3.00 2.00 8 / / / / 3.50 1.50 表 2 三种方法测得的标准曲线
Table 2. Standard curves measured by three methods
方法 Am Ap I y=0.02x+0.1586 R2=0.9973 / / II y=0.0186x−0.00254 R2=0.9999 y=0.01835x+0.0372 R2=0.9968 III y=0.00258x+0.0385 R2=0.9963 y=0.00275x−0.00302 R2=0.9987 表 3 三种方法测定标准样品的准确性分析
Table 3. Accuracy analysis of standard samples determined by three methods
配制样品 方法I
(mg/L)准确率
(%)方法II
(mg/L)准确率
(%)方法III
(mg/L)准确率
(%)30% Am 29.302 97.67 33.458 111.52 29.782 99.27 20% Am 19.677 98.39 23.193 115.97 19.936 99.68 10% Am 10.339 103.39 12.283 122.83 10.021 100.21 70% Ap 70.698 100.98 67.28 96.11 70.056 100.08 80% Ap 80.323 100.40 78.553 98.19 80.015 100.02 90% Ap 89.661 99.62 90.189 100.21 89.948 99.94 平均值 / 100.08 / 107.47 / 99.87 误差(%) / 0.08 / 7.47 / -0.13 表 4 三种方法对10份高粱样品淀粉含量的测定比较(%)
Table 4. Comparison of starch content of 10 sorghum samples determined by three methods (%)
序号 方法I 方法II 方法III Am Ap St Am Ap St Am Ap St 1 12.83 87.17 100 16.05 83.95 93.58 22.73 77.27 66.09 2 13.43 86.57 100 15.61 84.39 94.82 19.57 80.43 75.64 3 13.23 86.77 100 12.62 87.38 95.73 17.69 82.31 68.27 4 13.13 86.87 100 15.57 84.43 90.49 21.81 78.19 62.89 5 12.83 87.17 100 15.49 84.51 95.55 21.80 78.20 67.89 6 12.83 87.17 100 15.73 84.27 94.09 22.31 77.69 66.34 7 12.53 87.47 100 15.54 84.46 93.87 22.06 77.94 66.13 8 12.63 87.37 100 15.14 84.86 93.44 21.54 78.46 65.69 9 13.23 86.77 100 13.89 86.11 86.17 19.28 80.72 62.09 10 13.03 86.97 100 16.53 83.47 88.89 22.25 77.75 66.03 平均值 12.97 87.03 100 15.22 84.78 92.66 21.10 78.90 66.71 SD 0.29 0.29 0.00 1.14 1.14 3.13 1.66 1.66 3.68 RSD 2.22 0.33 0.00 7.48 1.34 3.38 7.87 2.11 5.52 检出限(mg/L) 0.49 / / 0.55 2.75 / 0.53 2.35 / 定量限(mg/L) 1.47 / / 1.65 8.33 / 1.61 7.13 / 注:Am和Ap表示占淀粉总量的百分比;St表示占试样的百分比;表9同。 表 5 NaOH和KOH分散高粱样品测定Am,Ap的含量
Table 5. Determination of Am and Ap in NaOH and KOH dispersed sorghum sample
方法 分散剂种类 NaOH KOH Am(%) Ap(%) Am(%) Ap(%) 方法I 15.54 84.46 6.24 93.76 方法II 16.90 83.10 3.75 96.25 方法III 15.75 84.25 6.25 93.75 表 6 溶液pH对吸光度值的影响
Table 6. Influence of solution pH value on absorbance value
名称 pH 方法I 方法II
(Am)方法II
(Ap)方法III
(Am)方法III
(Ap)参比溶液 3.27 0 0 0 0 0 样品溶液 11.65 / / / / / 乙酸(1 mL,1 mol/L) 4.65 0.337 0.170 0.164 0.171 0.164 乙酸(4 mL, 1 mol/L) 3.84 0.340 0.163 0.172 0.163 0.172 盐酸(0.5 mL, 1 mol/L) 3.78 0.339 0.163 0.171 0.163 0.169 表 7 高粱样品中淀粉含量的重复性测定
Table 7. Repeatability of starch content in sorghum samples
样品名称 重复次数 Am(mg) Ap(mg) St(mg) Ap/Am 1号样 1 12.19±0.28 55.42±0.76 67.6±0.47 4.55±0.33 2 10.88±0.47 60.07±0.54 70.95±0.63 5.52±0.58 3 10.99±0.35 56.97±0.38 67.95±0.57 5.18±0.40 2号样 1 12.84±0.23 67.82±0.47 80.66±0.55 5.28±0.26 2 12.08±0.15 68.59±0.59 80.89±0.62 5.68±0.24 3 12.3±0.18 62.39±0.39 74.47±0.73 5.07±0.21 3号样 1 13.28±0.32 65.49±0.44 78.77±0.58 4.93±0.30 2 12.19±0.44 71.69±0.56 83.88±0.25 5.88±0.52 3 12.30±0.37 71.62±0.63 83.92±0.31 5.82±0.45 表 8 高粱样品的加标回收率验证
Table 8. Verification of spiked recovery rate of sorghum samples
样品 加入量(mg/L) 实测值(mg/L) 回收率(%) Am 0.25 0.271 108.40 1.0 0.872 87.20 6.0 5.443 90.72 Ap 3.5 3.871 110.60 20 19.745 98.73 70 69.253 98.93 表 9 不同谷物样品中Am、Ap和St含量
Table 9. Am, Ap and total starch contents in different grain samples
样品 Am(%) Ap(%) St(%) Ap/Am 高粱 14.01±0.42 85.99±0.18 69.86±0.47 6.14±0.32 小麦 18.85±0.29 81.15±0.32 63.51±0.26 4.31±0.25 玉米 12.14±0.46 87.86±0.42 83.36±0.39 7.24±0.35 大米 15.43±0.28 84.57±0.52 93.75±0.27 5.48±0.44 -
[1] PAIANO V, BIANCHI G, DAVOLI E, et al. Risk assessment for the Italian population of acetaldehyde in alcoholic and non-alcoholic beverages[J]. Food Chemistry,2014,154:26−31. doi: 10.1016/j.foodchem.2013.12.098 [2] 毛祥, 温雪瓶, 黄丹, 等. 5种常用酿酒高粱的主要成分及淀粉特性差异分析[J]. 中国酿造,2020,39(3):57−62. [MAO X, WEN X P, HUANG D, et al. Difference analysis on main components and starch properties in five commonly used liquor-making sorghum[J]. China Brewing,2020,39(3):57−62. doi: 10.11882/j.issn.0254-5071.2020.03.012MAO X, WEN X P, HUANG D, et al. Difference analysis on main components and starch properties in five commonly used liquor-making sorghum[J]. China Brewing, 2020, 39(3): 57-62. doi: 10.11882/j.issn.0254-5071.2020.03.012 [3] NNAMCHI C I, OKOLO B N, MONEKE A N. Grain and malt quality properties of some improved Nigerian sorghum varieties[J]. Journal of the Institute of Brewing,2014,120:353−359. [4] SINGH H, SODHI N S, DHILLON B, et al. Physicochemical and structural characteristics of sorghum starch as affected by acid-ethanol hydrolysis[J]. Journal of Food Measurement and Characterization,2021,15(3):2377−2385. doi: 10.1007/s11694-020-00792-8 [5] LONDONO-RESTREPO S M, RINCON-LONDONO N, CONTRERAS-PADILLA M, et al. Morphological, structural, thermal, compositional, vibrational, and pasting characterization of white, yellow, and purple Arracacha Lego-like starches and flours (Arracacia xanthorrhiza)[J]. International Journal of Biological Macromolecules,2018,113:1188−1197. doi: 10.1016/j.ijbiomac.2018.03.021 [6] ESPITIA-HERNÁNDEZ P, CHAVEZ GONZALEZ M L, ASCACIO-VALDÉS J A, et al. Sorghum (Sorghum bicolor L.) as a potential source of bioactive substances and their biological properties[J]. Critical Reviews in Food Science and Nutrition,2022,62(8):2269−2280. doi: 10.1080/10408398.2020.1852389 [7] JAISWAL S, BANSIRAR A, SINGH A, et al. Diversity in grain and wax characteristics of twelve cultivars of Indian sorghum[J]. Materials Today: Proceedings,2022,57:1933−1937. doi: 10.1016/j.matpr.2022.03.041 [8] SOE HTET M N, WANG H, TIAN L, et al. Integrated starches and physicochemical characterization of sorghum cultivars for an efficient and sustainable intercropping model[J]. Plants,2022,11(12):1574. doi: 10.3390/plants11121574 [9] 曹文伯. 高粱与酿酒[J]. 酿酒,1999(1):20−21. [CAO W B. Sorghum and winemaking[J]. Liquor Making,1999(1):20−21.CAO W B. Sorghum and winemaking[J]. Liquor Making, 1999, (1): 20-21. [10] ZHU Y, CUI B, YUAN C, et al. A new separation approach of amylose fraction from gelatinized high amylose corn starch[J]. Food Hydrocolloids,2022,131:107759. doi: 10.1016/j.foodhyd.2022.107759 [11] JUNG S J, SONG Y B, PARK C S, et al. Different physicochemical properties of entirely α-glucan-coated starch from various botanical sources[J]. Food Science and Biotechnology,2022,31(9):1179−1188. doi: 10.1007/s10068-022-01113-z [12] NIETO-ORTEGA B, ARROYO J J, WALK C, et al. Near infrared reflectance spectroscopy as a tool to predict non-starch polysaccharide composition and starch digestibility profiles in common monogastric cereal feed ingredients[J]. Animal Feed Science and Technology,2022,285:115214. doi: 10.1016/j.anifeedsci.2022.115214 [13] 叶沁, 赵紫薇, 徐明雅, 等. 基于中红外漫反射光谱技术测定精米中直链淀粉含量的研究[J]. 中国粮油学报,2018,33(2):115−119,127. [YE Q, ZHAO Z W, XU M Y, et al. Amylose content detection in polished rice based on diffuse reflectance fourier transform infrared spectroscopy[J]. Journal of the Chinese Cereals and Oils Association,2018,33(2):115−119,127. doi: 10.3969/j.issn.1003-0174.2018.02.019YE Q, ZHAO Z W, XU M Y, et al. Amylose content detection in polished rice based on diffuse reflectance fourier transform infrared spectroscopy[J]. Journal of the Chinese Cereals and Oils Association, 2018, 33(2): 115-119, 127. doi: 10.3969/j.issn.1003-0174.2018.02.019 [14] 吴玉萍, 高云才, 徐昭梅, 等. 连续流动法测定新鲜烟叶中的直链淀粉和支链淀粉[J]. 云南大学学报,2018,40(2):315−320. [WU Y P, GAO Y C, XU Z M, et al. Determination of amylose and amylopectin of fresh tobacco by continuous flow method[J]. Journal of Yunnan University,2018,40(2):315−320.WU Y P, GAO Y C, XU Z M, et al. Determination of amylose and amylopectin of fresh tobacco by continuous flow method[J]. Journal of Yunnan University, 2018, 40(2): 315-320. [15] DHIR A, KAUR C, DEVI V, et al. A rapid single kernel screening method for preliminary estimation of amylose in maize[J]. Food Analytical Methods,2022,15:2163−2171. doi: 10.1007/s12161-022-02277-4 [16] YU M, LIU B, ZHONG F, et al. Interactions between caffeic acid and corn starch with varying amylose content and their effects on starch digestion[J]. Food Hydrocolloids,2021,114:106544. doi: 10.1016/j.foodhyd.2020.106544 [17] BUTARDO V M, SREENIVASULU N, JULIANO B O. Improving rice grain quality: State-of-the-art and future prospects[J]. Rice Grain Quality,2019,1892:19−55. [18] HUANG J, WANG Z, FAN L, et al. A review of wheat starch analyses: Methods, techniques, structure and function[J]. International Journal of Biological Macromolecules,2022,203:130−142. doi: 10.1016/j.ijbiomac.2022.01.149 [19] CHAVAN P, SINHMAR A, NEHRA M, et al. Impact on various properties of native starch after synthesis of starch nanoparticles: A review[J]. Food Chemistry,2021,364:130416. doi: 10.1016/j.foodchem.2021.130416 [20] MCCREADY R M, HASSID W Z. The separation and quantitative estimation of amylose and amylopectin in potato starch[J]. Journal of the American Chemical Society,1943,65(6):1154−1157. doi: 10.1021/ja01246a038 [21] 中华人民共和国国家质量监督检验检疫总局. GB/T 15683-2008 大米直链淀粉含量的测定[S]. 北京: 中国标准出版社, 2008.The State General Administration of Quality Supervision, Inspection and Quarantine, PRC. GB/T 15683-2008 Determination of amylose content in rice[S]. Beijing: China Standards Press, 2008. [22] 中华人民共和国农牧渔业部. GB 7648-1987 水稻、玉米、谷子籽粒直链淀粉测定法[S]. 北京: 中国标准出版社, 1987.Ministry of Agriculture, Animal Husbandry and Fisheries of the Peoples Republic of China. GB 7648-1987 Determinatlon of amylase in grains of rice, maize and millet[S]. Beijing: Standards Press of China, 1987. [23] 江苏省质量技术监督局. DB 32/T 2265-2012 鲜食玉米中直链淀粉和支链淀粉含量的测定双波长分光光度法[S]. 江苏: 江苏省地方标准出版社, 2012.Jiangsu Provincial Bureau of Quality and Technical Supervision. DB 32/T 2265-2012 Determination of amylose and amylopectin content in fresh maize by dual wavelength spectrophotometry[S]. Jiangsu: Jiangsu Local Standards Press, 2012. [24] REDDAPPA S B, CHHABRA R, TALUKDER Z A, et al. Development and validation of rapid and cost-effective protocol for estimation of amylose and amylopectin in maize kernels[J]. 3 Biotech,2022,12(3):1−8. [25] SHAO Y, ZHU D, YU J, et al. Development of certified reference materials for the determination of apparent amylose content in rice[J]. Molecules,2022,27(14):4647. doi: 10.3390/molecules27144647 [26] SONG Y H, SHI W L, ZHANG J, et al. Development and application of an efficient method for the amylose/amylopectin ratio determination in potato tubers[J]. Acta Horticulturae Sinica,2021,48(3):600. [27] OKPALA N E, ALORYI K D, AN T, et al. The roles of starch branching enzymes and starch synthase in the biosynthesis of amylose in rice[J]. Journal of Cereal Science,2022,104:103393. doi: 10.1016/j.jcs.2021.103393 [28] DÍAZ E O, KAWAMURA S, ISHIZU H, et al. Non-destructive assessment of amylose content in rice using a quality inspection system at grain elevators[J]. Food Chemistry,2022,379:132144. doi: 10.1016/j.foodchem.2022.132144 [29] 焦梦悦, 高涵, 王伟娜, 等. 四种测定直链淀粉和支链淀粉方法的比较[J]. 新宝登录入口(中国)有限公司,2019,40(12):259−264. [JIAO M Y, GAO H, WANG W N, et al. Comparison of four methods for the determination of amylose and amylopectin[J]. Science and Technology of Food Industry,2019,40(12):259−264. doi: 10.13386/j.issn1002-0306.2019.12.042JIAO M Y, GAO H, WANG W N, et al. Comparison of four methods for the determination of amylose and amylopectin[J]. Science and Technology of Food Industry, 2019, 40(12): 259-264. doi: 10.13386/j.issn1002-0306.2019.12.042 [30] WANG J P, LI Y, TIAN Y Q, et al. A novel triple-wavelength colorimetric method for measuring amylose and amylopectin contents[J]. Starch-Stä rke,2010,62(10):508−516. [31] ZHU T, JACKSON D S, WEHLING R L, et al. Comparison of amylose determination methods and the development of a dual wavelength iodine binding technique[J]. Cereal Chemistry,2008,85(1):51−58. doi: 10.1094/CCHEM-85-1-0051 [32] ZHU F. Structure, physicochemical properties, modifications, and uses of sorghum starch[J]. Comprehensive Reviews in Food Science and Food Safety,2014,13(4):597−610. doi: 10.1111/1541-4337.12070 [33] 何洁, 闫飞燕, 黄芳, 等. 双波长法测定薯芋类农产品中直链淀粉和支链淀粉的含量[J]. 新宝登录入口(中国)有限公司,2022,43(7):303−309. [HE J, YAN F, HUANG F, et al. Determination of amylose and amylopectin contents in yam and taros by dual-wavelength spectrophotometry[J]. Science and Technology of Food Industry,2022,43(7):303−309. doi: 10.13386/j.issn1002-0306.2021070119HE J, YAN F, HUANG F, et al. Determination of amylose and amylopectin contents in yam and taros by dual-wavelength spectrophotometry[J]. Science and Technology of Food Industry, 2022, 43(7): 303-309. doi: 10.13386/j.issn1002-0306.2021070119 [34] VAINIO K A. Determination of starch by iodine colorimetry[J]. Agricultural and Food Science,1968,40(2):60−66. doi: 10.23986/afsci.71700 [35] JARVIS C E, WALKER J R L. Simultaneous, rapid, spectrophotometric determination of total starch, amylose and amylopectin[J]. Journal of the Science of Food and Agriculture,1993,63(1):53−57. doi: 10.1002/jsfa.2740630109 [36] BATES F L, FRENCH D, RUNDLE R E. Amylose and amylopectin content of starches determined by their iodine complex formation[J]. Journal of the American Chemical Society,1943,65(2):142−148. doi: 10.1021/ja01242a003 [37] 蒋兰. 酿酒高粱淀粉含量测定及性质研究[D]. 重庆: 重庆大学, 2013.JIANG L. Determination of starch content and properties of brewing sorghum[D]. Chongqing: Chongqing University, 2013. [38] 项丰娟, 苏磊, 张秀南, 等. 小麦淀粉的研究现状[J]. 食品研究与开发,2021,42(16):212−219. [XIANG F J, SU L, ZHANG X N, et al. Research status of wheat starch[J]. Food Research and Development,2021,42(16):212−219. doi: 10.12161/j.issn.1005-6521.2021.16.031XIANG F J, SU L, ZHANG X N, et al. Research status of wheat starch[J]. Food Research and Development, 2021, 42(16): 212-219. doi: 10.12161/j.issn.1005-6521.2021.16.031 [39] 翟佳丽, 何睿. 大米中直链淀粉含量测定方法的比较[J]. 粮食加工,2017,42(3):24−26. [ZHAI J L, HE R. Comparison of methods for determination of amylose content in rice[J]. Grain Processing,2017,42(3):24−26.ZHAI J L, HE R. Comparison of methods for determination of amylose content in rice [J]. Grain Processing, 2017, 42(3): 24-26. -