• 食品科学与工程领域高质量科技期刊分级目录第一方阵T1
  • Scopus
  • FSTA
  • 北大核心期刊
  • 中国核心学术期刊RCCSE
  • DOAJ
  • JST China
  • 中国精品科技期刊
  • 中国农业核心期刊
  • CA
  • WJCI
  • 中国科技核心期刊CSTPCD
  • 中国生物医学SinoMed
中国精品科技期刊2020 食品青年科学家峰会

冷冻研磨对丝素蛋白的提取及理化性能的影响

刘佳林 应勇 郭蕾 徐玉玲 汪海波 许承志 未本美

刘佳林,应勇,郭蕾,等. 冷冻研磨对丝素蛋白的提取及理化性能的影响[J]. 新宝登录入口(中国)有限公司,2023,44(13):39−44. doi:  10.13386/j.issn1002-0306.2022070350
引用本文: 刘佳林,应勇,郭蕾,等. 冷冻研磨对丝素蛋白的提取及理化性能的影响[J]. 新宝登录入口(中国)有限公司,2023,44(13):39−44. doi:  10.13386/j.issn1002-0306.2022070350
LIU Jialin, YING Yong, GUO Lei, et al. Effects of Cryo-grinding on the Extraction and Physicochemical Properties of Silk Fibroin[J]. Science and Technology of Food Industry, 2023, 44(13): 39−44. (in Chinese with English abstract). doi:  10.13386/j.issn1002-0306.2022070350
Citation: LIU Jialin, YING Yong, GUO Lei, et al. Effects of Cryo-grinding on the Extraction and Physicochemical Properties of Silk Fibroin[J]. Science and Technology of Food Industry, 2023, 44(13): 39−44. (in Chinese with English abstract). doi:  10.13386/j.issn1002-0306.2022070350

冷冻研磨对丝素蛋白的提取及理化性能的影响

doi: 10.13386/j.issn1002-0306.2022070350
基金项目: 国家自然科学基金项目(22178277)。
详细信息
    作者简介:

    刘佳林(1996−),女,硕士研究生,研究方向:食品科学材料,E-mail:916032823@qq.com

    通讯作者:

    徐玉玲(1978−),女,博士,副教授,研究方向:天然高分子生物材料,E-mail: xyling619@126.com

  • 中图分类号: O636

Effects of Cryo-grinding on the Extraction and Physicochemical Properties of Silk Fibroin

  • 摘要: 本文将冷冻研磨技术引入到丝素蛋白的提取工艺中,以期实现丝素蛋白高效制备且性能可控的目的。具体地,将蚕茧在液氮中预冻12 h后进行低温研磨,并将得到的样品(GSF322)与未研磨样品SF(对照)进行理化性能对比。结果表明,SF,GSF322的得率相当,但脱胶时间从90 min减少到40 min;圆二色谱分析显示,预处理过程不会破坏丝素蛋白的立体结构;浊度实验研究表明,通过调控研磨时间可以有效调节丝素蛋白的体外组装能力,研磨3 min的丝素样品具有最好的体外组装能力;Zeta电位实验结果显示,预处理后,GSF322分子链上带正电荷的基团增多,更多-NH2的暴露导致材料亲水性增强。溶解性实验则证明,经过研磨处理后的GSF322在水中溶解率更高。热稳定性测试中,GSF322的脱水峰较SF的峰值高,表明其热稳定性更好。综合来说,在丝素蛋白的提取中,用冷冻研磨法来进行蚕茧的预处理,不仅可以提高丝素的提取效率,而且也可以调控其理化性能。
  • 图  1  不同冷冻研磨条件的再生丝素蛋白得率

    Figure  1.  Yield of regenerated silk fibroin protein under different freeze grinding conditions

    图  2  丝素蛋白样品的红外光谱图

    Figure  2.  Infrared spectrum of silk fibroin samples

    图  3  不同冷冻研磨条件下丝素蛋白圆二色谱图

    Figure  3.  Circle chromatogram of silk fibroin under different freeze grinding conditions

    图  4  不同冷冻研磨条件再生丝素蛋白浊度曲线图

    Figure  4.  Turbidity curves of regenerated silk fibroin protein under different freeze grinding conditions

    图  5  丝素蛋白SF和GSF322的Zeta电位图

    Figure  5.  Zeta potentials of SF and GSF322

    图  6  pH7.4时丝素蛋白SF和GSF322的Zeta电位图

    Figure  6.  Zeta potentials of SF and GSF322 at pH7.4

    图  7  丝素蛋白SF和GSF322的溶解率对比

    Figure  7.  Dissolution rate of SF and GSF322

    图  8  丝素蛋白SF和GSF322的DSC图

    Figure  8.  DSC diagram of SF and GSF322

  • [1] HUANG X W, LIANG H, LI Z, et a1. Monodisperse phase transfer and surface bioengineering of metal nanoparticles via a silk fibroin protein corona[J]. Nanoscale,2017,9(8):2695−2700. doi:  10.1039/C6NR09581J
    [2] LIM H R, KIM H S, QAZI R, et al. Advanced soft materials, sensor integrations, and applications of wearable flexible hybrid electronics in healthcare, energy, and environment[J]. Advanced Materials,2020,32:1901924.1−1901924.43.
    [3] ZHANG X H, SHENG N N, WANG L A, et al. Supramolecular nanofibrillar hydrogels as highly stretchable, elastic and sensitive ionic sensors[J]. Materials Horizons Journal,2019,6:326−333. doi:  10.1039/C8MH01188E
    [4] CHEN F, LU S P, ZHU L, et al. Conductive regenerated silk-fibroin-based hydrogels with integrated high mechanical performances[J]. J Mater Chem B,2019,7:1708−1715. doi:  10.1039/C8TB02445F
    [5] LI Y L, XIAO Y, LIU C S. The horizon of materiobiology: A perspective on material-guided cell behaviors and tissue engineering[J]. Chem Rev,2017,117:4376−4421.
    [6] DHASMANA A, SINGH L, ROY P, et al. Silk fibroin protein modified acellular dermal matrix for tissue repairing and regeneration[J]. Mat Sci Eng C-Mater Biol Appl,2019,97:313−324. doi:  10.1016/j.msec.2018.12.038
    [7] 李平, 宛晓春, 陶文沂, 等. 丝素蛋白膜固定β葡萄糖苷酶及其改良食品风味的研究[J]. 菌物学报,2014,23(1):73−78. [LI P, WAN X C, TAO W Y, et al. Study on the immobilization of β-glucosidase by silk fibroin membrane and its improvement of food flavor[J]. Acta Bacteriologica Sinica,2014,23(1):73−78.

    LI P, WAN X C, TAO W Y, et al. Study on the immobilization of β-glucosidase by silk fibroin membrane and its improvement of food flavor[J]. Acta Bacteriologica Sinica, 2014, 23(1): 73-78.
    [8] MARELLI B, BRENCKLE M A, KAPLAN D L, et al. Silk fibroin as edible coating for perishable food preservation[J]. Scientific Reports,2016,6:25236. doi:  10.1038/srep25263
    [9] 屠洁, 刘冠卉, 燕薇. 4种常用稳定剂和丝素蛋白对搅拌型酸奶黏度和保水性的影响[J]. 食品科学,2012,33(21):136−140. [TU J, LIU G H, YAN W. Effects of four common stabilizers combined with silk fibroin on viscosity and water-holding capacity of stirred yogurt[J]. Food Science,2012,33(21):136−140.

    TU J, LIU G H, YAN W. Effects of four common stabilizers combined with silk fibroin on viscosity and water-holding capacity of stirred yogurt[J]. Food Science, 2012, 33(21): 136-140.
    [10] 李莹莹, 王昉, 刘其春. 丝素蛋白及其复合材料的研究进展[J]. 材料工程,2018,46(8):14−26. [LI Y Y, WANG F, LIU Q C. Research progress of silk fibroin and its composite materials[J]. Materials Engineering,2018,46(8):14−26. doi:  10.11868/j.issn.1001-4381.2017.001242

    LI Y Y, WANG F, LIU Q C. Research progress of silk fibroin and its composite materials[J]. Materials Engineering, 2018, 46(8): 14-26. doi:  10.11868/j.issn.1001-4381.2017.001242
    [11] ARANGO M C, MONTOYA Y, PERESIN M S, et al. Silk sericin as a biomaterial for tissue engineering: A review[J]. International Journal of Polymeric Materials,2021,70(15/18):1115−1129.
    [12] CHELAZZI D, BADILLO-SANCHEZ D, GIORGI R, et al. Self-regenerated silk fibroin with controlled crystallinity for the reinforcement of silk[J]. Journal of Colloid and Interface Science,2020,576:230−240. doi:  10.1016/j.jcis.2020.04.114
    [13] GUO X, LIN N, LU S, et al. Preparation and biocompatibility characterization of silk fibroin 3D scaffolds[J]. ACS Applied Bio Materials,2021,4(2):1369−1380. doi:  10.1021/acsabm.0c01239
    [14] JMA B, SM C, SG C, et al. Silk fibroin as biomaterial for bone tissue engineering[J]. Acta Biomaterialia,2016,31:1−16. doi:  10.1016/j.actbio.2015.09.005
    [15] GUAN Y, YANG X Y, WANG L, et al. A novel silk/polyester woven small diameter arterial prosthesis: Degumming and the influence on cytocompatibility[J]. Fibers and Polymers,2015,16:1533−1539. doi:  10.1007/s12221-015-4934-5
    [16] SUN W, GREGIRY D A, TOMEH M A, et al. Silk fibroin as a functional biomaterial for tissue engineering[J]. International Journal of Molecular Sciences,2021,22(3):1499. doi:  10.3390/ijms22031499
    [17] WANG L P, LUO Z W, et al. Effect of degumming methods on the degradation behavior of silk fibroin biomaterials[J]. Fibers and Polymers,2019,20:45−50. doi:  10.1007/s12221-019-8658-9
    [18] ZHENG Z, GUO S, LIU Y, et al. Lithium-free processing of silk fibroin[J]. Journal of Biomaterials Applications,2016,31(3):450−463. doi:  10.1177/0885328216653259
    [19] RUI W, ZHU Y, ZHUO S, et al. Degumming of raw silk via steam treatment[J]. Journal of Cleaner Production,2018,203(PT.1−1216):492−497.
    [20] WANG Z, YANG H, LI W, et al. Effect of silk degumming on the structure and properties of silk fibroin[J]. The Journal of the Textile Institute,2019,110(1):134−140. doi:  10.1080/00405000.2018.1473074
    [21] VYAS S K, SHUKLA S R. Comparative study of degumming of silk varieties by different techniques[J]. Journal of the Textile Institute Proceedings & Abstracts,2015,107(2):191−199.
    [22] RASTOGI S, KANDASU B. Processing trends of silk fibers: Silk degumming, regeneration and physical functionalization[J]. Journal of the Textile Institute,2020,111(12):1−17.
    [23] TOWNSEND B, PEYRONEL F, CAHHAGHAN-PATEACHAR N, et al. Shear-induced aggregation or disaggregation in edible oils: Models, computer simulation, and USAXS measurements[J]. J Appl Phys,2017,122(22):224304−224314. doi:  10.1063/1.5004023
    [24] WILSON J F, BOLESLAV Z, ONDŘEJ Š, et al. Study of the shear-thinning effect between polymer nanoparticle surfaces during shear-induced aggregation[J]. Ind Eng Chem Res,2021,60(29):10654−10665. doi:  10.1021/acs.iecr.1c00232
    [25] MEGHWAL M, GOSWAMI T K. Comparative study on ambient and cryogenic grinding of fenugreek and black pepper seeds using rotor, ball, hammer and pin mill[J]. Powder Technology,2014,267:245−255. doi:  10.1016/j.powtec.2014.07.025
    [26] HE L, YANG J, XU C Z, et al. Effect of pre-shearing treatment on the molecular structure, fibrillogenesis behavior and gel properties of collagen[J]. New J Chem,2020,44(17):6760−6770. doi:  10.1039/D0NJ00054J
    [27] SUN M, WEI X, WANG H B, et al. Structure restoration of thermally denatured collagen by ultrahigh pressure treatment[J]. Food Bioprocess Tech,2020,13(2):367−378. doi:  10.1007/s11947-019-02389-6
    [28] YANG J, WANG H B, HE L, et al. Reconstituted fibril from heterogenic collagens-a new method to regulate properties of collagen gels[J]. Macromol Res,2019,27(11):1124−1135. doi:  10.1007/s13233-019-7160-y
    [29] CHEN X, LIU L, YUAN D, et al. Preparation of nano-sized Bi2Te3 thermoelectric material powders by cryogenic grinding[J]. Progress in Natural Science Materials International,2012,3:201−206.
    [30] 赵绪龙, 马广鹏, 武继锋, 等. 冷冻研磨结合LC-MS/MS法检测指甲中甲基苯丙胺、苯丙胺成分[J]. 刑事技术,2020,6:601−605. [ZHAO X L, MA G P, WU J F, et al. Determination of methamphetamine and amphetamine in nail through frozen grinding coupled into high performance liquid chromatography-tandem mass spectrometry[J]. Forensic Science and Technology,2020,6:601−605. doi:  10.16467/j.1008-3650.2020.06.011

    ZHAO X L, MA G P, WU J F, et al. Determination of methamphetamine and amphetamine in nail through frozen grinding coupled into high performance liquid chromatography-tandem mass spectrometry[J]. Forensic Science and Technology, 2020, 6: 601-605. doi:  10.16467/j.1008-3650.2020.06.011
    [31] BARANOWSKA-KOREZYE A, BARANOWSKA-KOREZYE A, HUDECKI A, et al. Silk powder from cocoons and woven fabric as a potential bio-modifier[J]. Materials,2021,14(22):6919. doi:  10.3390/ma14226919
    [32] HESS S, BEEK J V, PANNELLL K. Acid hydrolysis of silk fibroins and determination of the enrichment of isotopically labeled amino acids using precolumn derivatization and high-performance liquid chromatography-electrospray ionization-mass spectrometry[J]. Analytical Biochemistry,2002,311(1):19−26. doi:  10.1016/S0003-2697(02)00402-5
    [33] BATH J D, ELLIS J W. Some features and implications of the near infrared absorption spectra of various proteins: Gelatin, silk fibroin, and zinc insulinate[J]. J Phys Chem,2002,45(2):204−209.
    [34] FRENDEL A, SCHMIDT-NAAKE G. Controlled molecular weight degradation by vibration grinding[J]. 2001, 24(8): 798-803.
    [35] WANG Y Q, ZHAO P, LIU H, et al. Structure and temperature induced crystallization of natural rubber with different milling times[J]. Polym Sci Ser A,2021,63(3):228−237. doi:  10.1134/S0965545X21030135
    [36] AMOURA H, MOKRANE H, NADIEMI B. Effect of wet and dry milling on the functional properties of whole sorghum grain flour and kalian[J]. J Food Sci Technol,2020,57:1100−1109. doi:  10.1007/s13197-019-04145-2
    [37] ZHONG J, MA M J, LI W Y, et al. Self-assembly of regenerated silk fibroin from random coil nanostructures to antiparallel β-sheet nanostructures[J]. Biopolymers: Original Research on Biomolecules and Biomolecular Assemblies,2014,101(12):1181−1192.
    [38] SHAMSHINA J L, STEIN R S, ABIDI N. Choosing the right strategy: Cryogrinding vs. ball milling-comparing apples to apples[J]. Green Chemistry,2021,23(23):9646−9657. doi:  10.1039/D1GC03128G
    [39] 丁梦瑶, 戴梦男, 李蒙, 等. 不同分子质量丝素蛋白的分离与表征[J]. 纺织学报,2021,42(7):46−53. [DING M Y, DAI M G, LI M, et al. Separation and characterization of silk fibroin with different molecular weight[J]. Journal of Textile Research,2021,42(7):46−53. doi:  10.13475/j.fzxb.20201006308

    DING M Y, DAI M G, LI M, et al. Separation and characterization of silk fibroin with different molecular weight[J]. Journal of Textile Research, 2021, 42(7): 46-53. doi:  10.13475/j.fzxb.20201006308
    [40] ZHOU J, ZHENG D, ZHANG F, et al. A novel method to bind soybean protein onto the surface of poly (Ethylene terephthalate) fabric[J]. Textile Research Journal,2016,87(4):460−473.
  • 加载中
图(8)
计量
  • 文章访问数:  27
  • HTML全文浏览量:  20
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-08-02
  • 网络出版日期:  2023-05-20
  • 刊出日期:  2023-07-01

目录

    /

    返回文章
    返回