• 食品科学与工程领域高质量科技期刊分级目录第一方阵T1
  • Scopus
  • FSTA
  • 北大核心期刊
  • 中国核心学术期刊RCCSE
  • DOAJ
  • JST China
  • 中国精品科技期刊
  • 中国农业核心期刊
  • CA
  • WJCI
  • 中国科技核心期刊CSTPCD
  • 中国生物医学SinoMed
中国精品科技期刊2020 食品青年科学家峰会

装载β-乳球蛋白纳米颗粒的海藻酸钠三层复合膜构建及特性

樊文婷 李康静 宋婕 姜紫菡 许浩田 朱俊向 吴昊

樊文婷,李康静,宋婕,等. 装载β-乳球蛋白纳米颗粒的海藻酸钠三层复合膜构建及特性[J]. 新宝登录入口(中国)有限公司,2023,44(13):45−52. doi:  10.13386/j.issn1002-0306.2022070353
引用本文: 樊文婷,李康静,宋婕,等. 装载β-乳球蛋白纳米颗粒的海藻酸钠三层复合膜构建及特性[J]. 新宝登录入口(中国)有限公司,2023,44(13):45−52. doi:  10.13386/j.issn1002-0306.2022070353
FAN Wenting, LI Kangjing, SONG Jie, et al. Construction and Properties of Alginate-based Trilayer Composite Film Loaded with β-Lactoglobulin Nanoparticles[J]. Science and Technology of Food Industry, 2023, 44(13): 45−52. (in Chinese with English abstract). doi:  10.13386/j.issn1002-0306.2022070353
Citation: FAN Wenting, LI Kangjing, SONG Jie, et al. Construction and Properties of Alginate-based Trilayer Composite Film Loaded with β-Lactoglobulin Nanoparticles[J]. Science and Technology of Food Industry, 2023, 44(13): 45−52. (in Chinese with English abstract). doi:  10.13386/j.issn1002-0306.2022070353

装载β-乳球蛋白纳米颗粒的海藻酸钠三层复合膜构建及特性

doi: 10.13386/j.issn1002-0306.2022070353
基金项目: 山东省高等学校国家级大学生创新创业训练计划项目(202110435082);山东省自然科学基金(ZR2020MC213,ZR2020QC242);青岛农业大学高层次人才科研基金(6651120039)。
详细信息
    作者简介:

    樊文婷(2001−),女,本科,研究方向:农产品包装保鲜,E-mail:fan0419wenting@163.com

    通讯作者:

    吴昊(1981−),女,博士,教授,研究方向:农产品加工及贮藏,E-mail:wuhaoqau@163.com

  • 中图分类号: TS255.1

Construction and Properties of Alginate-based Trilayer Composite Film Loaded with β-Lactoglobulin Nanoparticles

  • 摘要: 本文基于层层组装法构建载有β-乳球蛋白纳米颗粒的海藻酸钠-聚乙烯吡咯烷酮-海藻酸钠三层复合膜。通过调节环境pH和温度,同时联合芹菜素配体,诱导β-乳球蛋白形成纳米颗粒。利用粒径、多分散性和Zeta电位表征,研究β-乳球蛋白纳米颗粒的形成规律和贮藏稳定性。然后,将β-乳球蛋白纳米颗粒装载到海藻酸钠-聚乙烯吡咯烷酮-海藻酸钠三层复合膜中,研究纳米载量对膜机械特性、透过特性、光学特性和热特性的影响。结果表明:调整环境pH为7.1,加热温度为75 ℃,在蛋白/配体摩尔比1:8条件下可得到稳定性较好的β-乳球蛋白纳米颗粒。该纳米颗粒以0.2 mg/mL和0.3 mg/mL浓度添加到三层复合膜中时,薄膜的机械特性和水蒸气阻隔性均有明显提升。此外,β-乳球蛋白纳米颗粒的加入还改善了三层复合膜的透光性和热稳定性。综上,装载β-乳球蛋白纳米颗粒的海藻酸钠三层复合膜具有良好的包装特性和应用潜力。
  • 图  1  pH对β-Lg纳米颗粒粒径、PDI和Zeta电位的影响

    Figure  1.  Effect of pH on size, PDI, and Zeta potential of β-Lg nanoparticles

    注:同一指标不同字母表示差异显著(P<0.05);图2图3图5同。

    图  2  温度对β-Lg纳米颗粒粒径、PDI和Zeta电位的影响

    Figure  2.  Effect of temperature on size, PDI, and Zeta potential of β-Lg nanoparticles

    图  3  β-Lg/芹菜素摩尔比对β-Lg纳米颗粒粒径、PDI和Zeta电位的影响

    Figure  3.  Effect of molar ratio of β-Lg/apigenin on size, PDI, and Zeta potential of β-Lg nanoparticles

    图  4  pH(a,b,c)、温度(d,e,f)和摩尔比(g,h,i)对贮藏期内β-Lg纳米颗粒粒径、PDI和Zeta电位的影响

    Figure  4.  Effect of pH (a, b, c), temperature (d, e, f), and molar ratio (g, h, i) on the size, PDI, and Zeta potential of β-Lg nanoparticles during storage

    图  5  β-Lg纳米颗粒装载对SA-PVP-SA复合膜水分含量和WVP的影响

    Figure  5.  Effect of β-Lg nanoparticle loading on moisture content and WVP of SA-PVP-SA composite films

    图  6  β-Lg纳米颗粒装载对SA-PVP-SA复合膜透光率的影响

    Figure  6.  Effect of β-Lg nanoparticles loading on the light transmission of SA-PVP-SA composite films

    图  7  不同β-Lg纳米颗粒添加量下三层复合膜的TGA曲线(a)及其一阶导数(b)

    Figure  7.  The TGA curve (a) and its first-order derivative (b) of trilayer composite films with different adding amount of β-Lg nanoparticles

    表  1  β-Lg纳米颗粒装载对SA-PVP-SA复合膜杨氏模量、拉伸强度、断裂伸长率和韧性的影响

    Table  1.   Effect of β-Lg nanoparticles loading on Young's modulus, tensile strength, elongation at break, and toughness of SA-PVP-SA composite films

    复合膜杨氏模量(MPa)拉伸强度(MPa)断裂伸长率(%)韧性(MJ/m3
    SA-PVP0-SA12.26±0.12b47.95±5.15b15.03±0.30b456.89±2.45c
    SA-PVP0.1-SA8.71±0.07d48.63±7.55b23.77±1.17a463.09±8.34c
    SA-PVP0.2-SA12.89±0.11a52.45±3.65ab21.23±3.00a663.10±11.35a
    SA-PVP0.3-SA9.61±0.08c62.48±10.42a22.29±2.50a625.72±22.12b
    SA-PVP0.4-SA7.71±0.07e27.25±0.78c11.28±0.30c189.99±1.12d
    注:同列不同字母表示差异显著(P<0.05)。
    下载: 导出CSV
  • [1] GUO X, WANG Y, QIN Y, et al. Structures, properties and application of alginic acid: A review[J]. International Journal of Biological Macromolecules,2020,162:618−628. doi:  10.1016/j.ijbiomac.2020.06.180
    [2] JULINOVÁ M, VAŇHAROVÁ L, ŠAŠINKOVÁ D, et al. Characterization and biodegradation of ternary blends of lignosulfonate/synthetic zeolite/polyvinylpyrrolidone for agricultural chemistry[J]. International Journal of Biological Macromolecules,2022,213:110−122. doi:  10.1016/j.ijbiomac.2022.05.153
    [3] ZHANG X, XU Y, ZHANG X, et al. Progress on the layer-by-layer assembly of multilayered polymer composites: Strategy, structural control and applications[J]. Progress in Polymer Science,2019,89:76−107. doi:  10.1016/j.progpolymsci.2018.10.002
    [4] MAHMUD J, SARMAST E, SHANKAR S, et al. Advantages of nanotechnology developments in active food packaging[J]. Food Research International,2022,154:111023. doi:  10.1016/j.foodres.2022.111023
    [5] ADEYEYE S A O, ASHAOLU T J. Applications of nano-materials in food packaging: A review[J]. Journal of Food Process Engineering,2021,44(7):e13708.
    [6] MCCLEMENTS D J, XIAO H. Is nano safe in foods? Establishing the factors impacting the gastrointestinal fate and toxicity of organic and inorganic food-grade nanoparticles[J]. NPJ Science of Food,2017,1(1):1−13. doi:  10.1038/s41538-017-0001-5
    [7] CAO X, HAN Y, GU M, et al. Foodborne titanium dioxide nanoparticles induce stronger adverse effects in obese mice than non-obese mice: Gut microbiota dysbiosis, colonic inflammation, and proteome alterations[J]. Small,2020,16(36):2001858. doi:  10.1002/smll.202001858
    [8] JEEVAHAN J, CHANDRASEKARAN M. Nanoedible films for food packaging: A review[J]. Journal of Materials Science,2019,54(19):12290−12318. doi:  10.1007/s10853-019-03742-y
    [9] WANG C, GONG C, QIN Y, et al. Bioactive and functional biodegradable packaging films reinforced with nanoparticles[J]. Journal of Food Engineering,2022,312:110752. doi:  10.1016/j.jfoodeng.2021.110752
    [10] LI X, JI N, QIU C, et al. The effect of peanut protein nanoparticles on characteristics of protein-and starch-based nanocomposite films: A comparative study[J]. Industrial Crops and Products,2015,77:565−574. doi:  10.1016/j.indcrop.2015.09.026
    [11] ZHANG S, ZHAO H. Preparation and properties of zein-rutin composite nanoparticle/corn starch films[J]. Carbohydrate Polymers,2017,169:385−392. doi:  10.1016/j.carbpol.2017.04.044
    [12] LIU C, LIU Z, SUN X, et al. Fabrication and characterization of β-lactoglobulin-based nanocomplexes composed of chitosan oligosaccharides as vehicles for delivery of astaxanthin[J]. Journal of Agricultural and Food Chemistry,2018,66(26):6717−6726. doi:  10.1021/acs.jafc.8b00834
    [13] SALAH M, MANSOUR M, ZOGONA D, et al. Nanoencapsulation of anthocyanins-loaded β-lactoglobulin nanoparticles: Characterization, stability, and bioavailability in vitro[J]. Food Research International,2020,137:109635. doi:  10.1016/j.foodres.2020.109635
    [14] REN Y, LIU T, LIU H, et al. Functional improvement of (−)-epicatechin gallate and piceatannol through combined binding to β-lactoglobulin: Enhanced effect of heat treatment and nanoencapsulation[J]. Journal of Functional Foods,2022,94:105120. doi:  10.1016/j.jff.2022.105120
    [15] ZHU J, LI K, WU H, et al. Multi-spectroscopic, conformational, and computational atomic-level insights into the interaction of β-lactoglobulin with apigenin at different pH levels[J]. Food Hydrocolloids,2020,105:105810. doi:  10.1016/j.foodhyd.2020.105810
    [16] RAMOS O L, PEREIRA R N, MARTINS A, et al. Design of whey protein nanostructures for incorporation and release of nutraceutical compounds in food[J]. Critical Reviews in Food Science and Nutrition,2017,57(7):1377−1393. doi:  10.1080/10408398.2014.993749
    [17] SIMÕES L S, ABRUNHOSA L, VICENTE A A, et al. Suitability of β-lactoglobulin micro-and nanostructures for loading and release of bioactive compounds[J]. Food Hydrocolloids,2020,101:105492. doi:  10.1016/j.foodhyd.2019.105492
    [18] ADITYA N P, YANG H, KIM S, et al. Fabrication of amorphous curcumin nanosuspensions using β-lactoglobulin to enhance solubility, stability, and bioavailability[J]. Colloids & Surfaces B Biointerfaces,2015,127:114−121.
    [19] GUAN G, ZHANG L, ZHU J, et al. Antibacterial properties and mechanism of biopolymer-based films functionalized by CuO/ZnO nanoparticles against Escherichia coli and Staphylococcus aureus[J]. Journal of Hazardous Materials,2021,402:123542. doi:  10.1016/j.jhazmat.2020.123542
    [20] LI K, ZHU J, GUAN G, et al. Preparation of chitosan-sodium alginate films through layer-by-layer assembly and ferulic acid crosslinking: Film properties, characterization, and formation mechanism[J]. International Journal of Biological Macromolecules,2019,122:485−492. doi:  10.1016/j.ijbiomac.2018.10.188
    [21] CHENG S Y, WANG B J, WENG Y M. Antioxidant and antimicrobial edible zein/chitosan composite films fabricated by incorporation of phenolic compounds and dicarboxylic acids[J]. LWT-Food Science & Technology,2015,63(1):115−121.
    [22] SOUZA V G L, FERNANDO A L, PIRES J R A, et al. Physical properties of chitosan films incorporated with natural antioxidants[J]. Industrial Crops & Products,2017,107:565−572.
    [23] SUN R, ZHU J, WU H, et al. Modulating layer-by-layer assembled sodium alginate-chitosan film properties through incorporation of cellulose nanocrystals with different surface charge densities[J]. International Journal of Biological Macromolecules,2021,180:510−522. doi:  10.1016/j.ijbiomac.2021.03.092
    [24] JI W, YANG F, YANG M. Effect of change in pH, heat and ultrasound pre-treatments on binding interactions between quercetin and whey protein concentrate[J]. Food Chemistry,2022,384:132508. doi:  10.1016/j.foodchem.2022.132508
    [25] SOLEIMANIFAR M, JAFARI S M, ASSADPOUR E. Encapsulation of olive leaf phenolics within electrosprayed whey protein nanoparticles production and characterization[J]. Food Hydrocolloids,2020,101:105572. doi:  10.1016/j.foodhyd.2019.105572
    [26] SAVA N, VAN DER PLANCKEN I, CLAEYS W, et al. The kinetics of heat-induced structural changes of β-lactoglobulin[J]. Journal of Dairy Science,2005,88:1646−1653. doi:  10.3168/jds.S0022-0302(05)72836-8
    [27] WEI Z, YANG W, FAN R, et al. Evaluation of structural and functional properties of protein-EGCG complexes and their ability of stabilizing a model β-carotene emulsion[J]. Food Hydrocolloids,2015,45:337−350. doi:  10.1016/j.foodhyd.2014.12.008
    [28] WU X, WU H, LIU M, et al. Analysis of binding interaction between (-)-epigallocatechin (EGC) and beta-lactoglobulin by multi-spectroscopic method[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy,2011,82:164−168. doi:  10.1016/j.saa.2011.07.028
    [29] SHPIGELMAN A, ISRAELI G, LIVNEY Y D. Thermally-induced protein-polyphenol co-assemblies: Beta lactoglobulin-based nanocomplexes as protective nanovehicles for EGCG[J]. Food Hydrocolloids,2010,24:735−743. doi:  10.1016/j.foodhyd.2010.03.015
    [30] 杜文凯. β-乳球蛋白与表没食子儿茶素没食子酸酯制备纳米粒及其抗肿瘤活性研究[D]. 杭州: 浙江工商大学, 2012

    DU W K. Preparation of and anti-cancer activity evaluation of the nanoparticles of β-lactoglobulin-epigallocatechin gallate[D]. Hangzhou: Zhejiang Gongshang University, 2012.
    [31] 田木. 山羊奶乳清蛋白的制备及其包埋大豆异黄酮体系研究[D]. 哈尔滨: 东北农业大学, 2021

    TIAN M. Goat milk whey protein preparation and its application in whey protein-soy isoflavones delivery system[D]. Harbin: Northeast Agricultural University, 2021.
    [32] OYMACI P, ALTINKAYA S A. Improvement of barrier and mechanical properties of whey protein isolate based food packaging films by incorporation of zein nanoparticles as a novel bionanocomposite[J]. Food Hydrocolloids,2016,54:1−9. doi:  10.1016/j.foodhyd.2015.08.030
    [33] MAROUFI L Y, GHORBANI M, TABIBIAZAR M, et al. Advanced properties of gelatin film by incorporating modified kappa-carrageenan and zein nanoparticles for active food packaging[J]. International Journal of Biological Macromolecules,2021,183:753−759. doi:  10.1016/j.ijbiomac.2021.04.163
    [34] 彭勇, 李云飞, 项凯翔. 绿茶多酚提高壳聚糖包装膜的抗氧化性能[J]. 农业工程学报,2013,29(14):269−276. [PENG Y, LI Y F, XIANG K X. Adding green tea polyphenols enhances antioxidant of chitosan film[J]. Transactions of the Chinese Society of Agricultural Engineering,2013,29(14):269−276. doi:  10.3969/j.issn.1002-6819.2013.14.034

    PENG Y, LI Y, XIANG K. Adding green tea polyphenols enhances antioxidant of chitosan film[J]. Transactions of the Chinese Society of Agricultural Engineering, 2013, 29(14): 269−276. doi:  10.3969/j.issn.1002-6819.2013.14.034
    [35] 刘思源. 淀粉基纳米复合膜材多层次结构对水蒸气与氧气阻隔性能的影响研究[D]. 广州: 华南理工大学, 2018

    LIU S Y. Effect of starch-based nanocomposite films multi-scale structures on water vapor and oxygen barrier property[D]. Guangzhou: South China University of Technology, 2018.
    [36] VILELA C, PINTO R J B, COELHO J, et al. Bioactive chitosan/ellagic acid films with UV-light protection for active food packaging[J]. Food Hydrocolloids,2017,73:120−128. doi:  10.1016/j.foodhyd.2017.06.037
    [37] YANG M, XIA Y, WANG Y, et al. Preparation and property investigation of crosslinked alginate/silicon dioxide nanocomposite films[J]. Journal of Applied Polymer Science,2016,133(22):43489.
    [38] LIU S, LI Y, LI L. Enhanced stability and mechanical strength of sodium alginate composite films[J]. Carbohydrate Polymers,2017,160:62−70. doi:  10.1016/j.carbpol.2016.12.048
  • 加载中
图(7) / 表(1)
计量
  • 文章访问数:  20
  • HTML全文浏览量:  10
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-08-02
  • 网络出版日期:  2023-05-20
  • 刊出日期:  2023-07-01

目录

    /

    返回文章
    返回