Optimization of Preparation Process and in Vitro Digestion Study of Anthocyanin/Fe3O4 Nanocomposites by Response Surface Methodology
-
摘要: 为了提高花青素的生物利用率,本研究采用共沉淀的方法制备花青素/Fe3O4纳米复合物。利用响应面法(Response Surface Method,RSM)优化花青素/Fe3O4纳米复合物的合成,并对花青素/Fe3O4纳米复合物进行粒径分析、Zeta电位测定、扫描电子显微镜、傅里叶变换红外光谱分析以及体外模拟消化实验。结果表明花青素/Fe3O4纳米复合物的最佳制备条件为花青素与Fe3O4的质量比为1:46,反应时间为19.6 h,反应温度为47 ℃,此工艺条件下花青素的包封率为87.51%。该纳米复合物粒径分布集中在100~1200 nm,且分布均匀,Zeta电位为−48.15 mV。通过扫描电子显微镜观察到花青素与Fe3O4纳米粒子间形成了表面光滑的球状颗粒。花青素/Fe3O4纳米复合物在1635、1083 cm−1处出现花青素C=O和C-H特征峰。体外消化实验得出花青素在胃液和肠液中的保留率为91.99%和46.23%,DPPH和ABTS+自由基清除能力在肠液中均提高(P<0.05)。因此,共沉淀法能够提高花青素的生物利用率,为花青素的高效使用提供了技术支持。
-
关键词:
- 花青素/Fe3O4纳米复合物 /
- 响应面 /
- 体外消化 /
- 抗氧化活性 /
- 结构表征
Abstract: In order to improve the bioavailability of anthocyanins, a co-precipitation method was used to prepare anthocyanin/Fe3O4 nanocomposites in this study. The response surface method was used to optimize the synthesis of anthocyanin/Fe3O4 nanocomposites. The particle size analysis, Zeta potential measurement, scanning electron microscope, fourier transform infrared spectroscopy and in vitro digestion simulation of anthocyanin/Fe3O4 nanocomposites were carried out. The results showed that the optimum conditions for the preparation of anthocyanin/Fe3O4 nnanocomposites were anthocyanin/Fe3O4 mass ratio of 1:46, reaction time 19.6 h, reaction temperature 47 ℃. The encapsulation rate of anthocyanin under these conditions was 87.51%. The particle size distribution of anthocyanin/Fe3O4 nanocomposites was concentrated in the range of 100~1200 nm with uniform distribution, and the Zeta potential was −48.15 mV. The formation of spherical particles with smooth surfaces between anthocyanin and Fe3O4 nanoparticles was observed by scanning electron microscopy. The anthocyanin/Fe3O4 nanocomplexes showed anthocyanin C=O and C-H characteristic peaks at 1635 cm−1 and 1083 cm−1. The in vitro digestion simulation showed that the retention of anthocyanin was 91.99% and 46.23% in gastric and intestinal fluids. The scavenging ability of DPPH and ABTS+ radicals was increased in the intestinal fluid (P<0.05). Therefore, co-precipitation method can improve the bioavailability of anthocyanins, and provide technical support for the efficient utilization of anthocyanins. -
表 1 响应面试验因素水平设计
Table 1. Factors and levels for response surface test
因素 水平 −1 0 1 A质量比 1:40 1:45 1:50 B时间(h) 16 20 24 C温度(℃) 40 50 60 表 2 响应面试验设计与结果
Table 2. Response surface design experiment conditions and results
试验号 A B C Y(%) 1 1 −1 0 81.89 2 1 0 −1 76.20 3 0 0 0 86.04 4 −1 −1 0 63.81 5 0 1 1 72.17 6 0 0 0 86.17 7 0 1 −1 75.95 8 −1 1 0 79.99 9 0 0 0 88.78 10 0 −1 −1 82.34 11 0 0 0 86.10 12 0 0 0 87.25 13 1 0 1 81.09 14 0 −1 1 63.63 15 −1 0 1 53.66 16 1 1 0 72.23 17 −1 0 −1 81.77 表 3 Box-Behnken响应面模型的方差分析
Table 3. ANOVA for response surface model of Box-Behnken
来源 平方和 自由度 均方 F P 显著性 模型 1507.98 9 167.55 47.55 <0.0001 ** A 129.44 1 129.44 36.74 0.0005 ** B 9.40 1 9.40 2.67 0.1465 C 261.18 1 261.18 74.12 <0.0001 ** AB 166.93 1 166.93 47.38 0.0002 ** AC 272.25 1 272.25 77.27 <0.0001 ** BC 55.73 1 55.73 15.82 0.0053 ** A2 170.60 1 170.60 48.42 0.0002 ** B2 152.73 1 152.73 43.35 0.0003 ** C2 225.78 1 225.78 64.08 <0.0001 ** 残差 24.66 7 3.52 失拟项 19.10 3 6.37 4.58 0.0879 纯误差 5.56 4 1.39 总离差 1532.65 16 注:*P<0.05;**P<0.01。 表 4 花青素、Fe3O4和花青素/Fe3O4纳米复合物的Zeta电位
Table 4. Zeta potential of anthocyanin, Fe3O4 and anthocyanin/Fe3O4 nanocomposites
材料 电位(mV) 平均电位(mV) 花青素 +10.41 +11.02 +11.63 +11.02 Fe3O4 −58.18 −58.78 −59.39 −58.78 花青素/Fe3O4 −47.55 −48.15 −48.75 −48.15 -
[1] 马蓉. 紫色蔬菜中花色苷抗糖功能及抗炎功能的评价[D]. 西宁: 青海大学, 2020MA R. Evaluation of anti-glycemic and anti-inflammatory function of anthocyanin in purple vegetables[D]. Xining: Qinghai University, 2020. [2] 张念, 彭怡霖, 陈细羽, 等. 超高效液相色谱法检测植物源性食品中花青素[J]. 分析科学学报,2022,38(1):17−23. [ZHANG N, PENG Y L, CHEN X Y, et al. Determination of anthocyanins in plant origin products by ultra-high performance liquid chromatography[J]. Journal of Analytical Science,2022,38(1):17−23. doi: 10.13526/j.issn.1006-6144.2022.01.004ZHANG N, PENG Y L, CHEN X Y, et al. Determination of anthocyanins in plant origin products by ultra-high performance liquid chromatography[J]. Journal of Analytical Science, 2022, 38(1): 17-23. doi: 10.13526/j.issn.1006-6144.2022.01.004 [3] RU J Y, HAI B L, YANG Y, et al. Anticancer activities of proanthocyanidins from the plant Urceola huaitingii and their synergistic effects in combination with chemotherapeutics[J]. Fitoterapia,2016,112:175−182. doi: 10.1016/j.fitote.2016.05.015 [4] TOYAMA Y, TOSHIMA S, HIRANO T, et al. Polyphenol contents, antioxidant activitie, and anti-cancer cell proliferation properties at each stage of fruit development in intersectional hybrids between highbush blueberry and shashanbo (Vaccinium bracteatum Thunb.)[J]. Journal of Berry Research,2021,11(4):689−704. doi: 10.3233/JBR-210713 [5] 张勍, 汪晟坤, 连秀仪, 等. 夏黑葡萄花青素在D-半乳糖致衰老小鼠心肌细胞抗氧化和清除自由基中的作用[J]. 河南医学研究,2019,28(20):3649−3652. [ZHANG Q, WANG S K, LIAN X Y, et al. The antioxidant and free radical scavenging effects of Xiahei grape anthocyanin in myocardialcells of aging mice induced by D-galactose[J]. Henan Medical Research Henan Med Res,2019,28(20):3649−3652. doi: 10.3969/j.issn.1004-437X.2019.20.001ZHANG Q, WANG S K, LIAN X Y, et al. The antioxidant and free radical scavenging effects of Xiahei grape anthocyanin in myocardialcells of aging mice induced by D-galactose[J]. Henan Medical Research Henan Med Res, 2019, 28(20): 3649-3652. doi: 10.3969/j.issn.1004-437X.2019.20.001 [6] 徐青, 王代波, 刘国华, 等. 花青素稳定性影响因素及改善方法研究进展[J]. 食品研究与开发,2020,41(7):218−224. [XU Q, WANG D B, LIU G H, et al. Influencing factors and improving methods of anthocyanin stability[J]. Food Research and Development,2020,41(7):218−224. doi: 10.12161/j.issn.1005-6521.2020.07.037XU Q, WANG D B, LIU G H, et al. Influencing factors and improving methods of anthocyanin stability[J]. Food Research and Development, 2020, 41(7): 218-224. doi: 10.12161/j.issn.1005-6521.2020.07.037 [7] 蒋希芝. 桑椹花青素的结构修饰和纳米复合物及其生物学特性研究[D]. 镇江: 江苏科技大学, 2020JIANG X Z. Structural modification and nanocomposites of mulberry anthocyanin and its biological characteristics[D]. Zhenjiang: Jiangsu University of Science and Technology, 2020. [8] CHEN B H, STEPHEN I B. Nanoemulsion and nanoliposome based strategies for improving anthocyanin stability and bioavailability[J]. Nutrients,2019,11(5):1052. doi: 10.3390/nu11051052 [9] RAFIEE Z, BARZEGAR M, SAHARI M A, et al. Nanoliposomal carriers for improvement the bioavailability of high-valued phenolic compounds of pistachio green hull extract[J]. Food Chemistry,2017,220:115−122. doi: 10.1016/j.foodchem.2016.09.207 [10] MA Y Y, XU J J, JIANG S S, et al. Effect of chitosan coating on the properties of nanoliposomes loaded with oyster protein hydrolysates: Stability during spray-drying and freeze-drying[J]. Food Chemistry,2022,385:132−603. [11] WANG L, ZHOU B Q, LI Y H, et al. Lactoferrin modification of berberine nanoliposomes enhances the neuroprotective effects in a mouse model of Alzheimer's disease[J]. Neural Regeneration Research,2023,18(1):226−232. doi: 10.4103/1673-5374.344841 [12] SUZANA G C, VICTOR H S A, ALINE M D S, et al. Advances and challenges in nanocarriers and nanomedicines for veterinary application[J]. International Journal of Pharmaceutics,2020,580:119−214. [13] 汤宇峰, 李丽敏, 李嘉琪. 浅谈四氧化三铁纳米粒子的制备方法与利用现状[J]. 安徽化工,2022,48(1):14−16. [TANG Y F, LI L M, LI J Q. Research status and application prospect of oral in-situ gel[J]. Anhui Chemical Industry,2022,48(1):14−16. doi: 10.3969/j.issn.1008-553X.2022.01.004TANG Y F, LI L M, LI J Q. Research status and application prospect of oral in-situ gel[J]. Anhui Chemical Industry, 2022, 48(1): 14-16. doi: 10.3969/j.issn.1008-553X.2022.01.004 [14] 史宇哲. 植物原花青素功能化的四氧化三铁制备及应用研究[D]. 哈尔滨: 东北林业大学, 2020SHI Y Z. Preparation and application of functionalized iron tetroxide from proanthocyanidins[D]. Harbin: Northeast Forestry University, 2020. [15] VIVIAN C I, LUIZ G L. Black rice (Oryza sativa L.): A review of its historical aspects, chemical composition, nutritional and functional properties, and applications and processing technologies[J]. Food Chemistry,2019,301:125−304. [16] 刘长姣, 郑霞, 熊湘炜, 等. 分光光度法测定黑米花青素方法的建立[J]. 粮食与油脂,2019,32(1):73−77. [LIU C J, ZHENG X, XIONG X W, et al. Detection of anthocyanin in black rice by spectrophotometry[J]. Cereals& Oils,2019,32(1):73−77. doi: 10.3969/j.issn.1008-9578.2019.01.020LIU C J, ZHENG X, XIONG X W, et al. Detection of anthocyanin in black rice by spectrophotometry[J]. Cereals&Oils, 2019, 32(1): 73-77. doi: 10.3969/j.issn.1008-9578.2019.01.020 [17] CHEN K L, NI X J, WANG L C, et al. Evaluation of the stability and the encapsulation efficiency of W/O/W; multiple emulsions by electrochemical determination[J]. Journal of Dispersion Science and Technology,2020,41(13):1949−1955. doi: 10.1080/01932691.2019.1645021 [18] 李玉壬, 王瑞, 王旭捷, 等. 茶多酚在模拟胃肠消化过程中含量及活性的变化规律[J]. 现代食品科技,2021,37(7):115−120, 22. [LI Y R, WANG R, WANG X J, et al. Changes in content and antioxidant activity of tea polyphenols during in vitro simulated gastrointestinal digestion[J]. Modern Food Science & Technology,2021,37(7):115−120, 22. doi: 10.13982/j.mfst.1673-9078.2021.7.0025LI Y R, WANG R, WANG X J, et al. Changes in content and antioxidant activity of tea polyphenols during in vitro simulated gastrointestinal Digestion[J]. Modern Food Science & Technology, 2021, 37(7): 115-120, 22. doi: 10.13982/j.mfst.1673-9078.2021.7.0025 [19] 金珊珊. 燕麦β-葡聚糖的氧化及载姜黄素纳米复合物的研究[D]. 福州: 福州大学, 2018JIN S S. Study on the oxidation of β-glucan and curcumin-loaded oxidized β-glucan nanocomposite[D]. Fuzhou: Fuzhou University, 2018. [20] 朱文卿. 牛蒡多糖-绿原酸复合物的制备、结构表征及抗氧化活性研究[D]. 泰安: 山东农业大学, 2022ZHU W Q. Preparation, structure characterization and antioxidant activity of burdock polysaccharide-chlorogenic acid complex[D]. Taian: Shandong Agricultural University, 2022. [21] 刘凯. 蓝莓-绿茶复合饮料的制备研究[D]. 济南: 齐鲁工业大学, 2021LIU K. Study on preparation of blueberry-green tea compound beverage[D]. Jinan: Qilu University of Technology, 2021. [22] 王立爽, 蒋裕琪, 于凤桐, 等. 响应面法优化紫甘薯花青素微胶囊制备工艺[J]. 新宝登录入口(中国)有限公司,2017,38(19):191−196. [WANG L S, JIANG Y Q, YU F T, et al. Optimization of purple sweet potato anthocyanins microcapsules by response surface methodology[J]. Science and Technology of Food Industry,2017,38(19):191−196. doi: 10.13386/j.issn1002-0306.2017.19.035WANG L S, JIANG Y Q, YU F T, et al. Optimization of purple sweet potato anthocyanins microcapsules by response surface methodology[J]. Science and Technology of Food Industry, 2017, 38(19): 191-196. doi: 10.13386/j.issn1002-0306.2017.19.035 [23] 李琳, 张国强, 石晓峰. Box-Behnken响应面法优化复方红黄口含片的醇提工艺[J]. 华西药学杂志,2020,35(4):416−423. [LI L, ZHANG G Q, SHI X F. Optimization of the alcohol extraction process of compound honghuang buccal tablets by Box-Behnken response surface method[J]. West China Journal of Pharmaceutical Sciences,2020,35(4):416−423. doi: 10.13375/j.cnki.wcjps.2020.04.015LI L, ZHANG G Q, SHI X F. Optimization of the alcohol extraction process of compound honghuang buccal tablets by Box-Behnken response surface method[J]. West China Journal of Pharmaceutical Sciences, 2020, 35(4): 416-423. doi: 10.13375/j.cnki.wcjps.2020.04.015 [24] 张怀予, 王军节, 陈园凡, 等. 水蒸气蒸馏法提取花椒精油及挥发性成分分析[J]. 食品与发酵工业,2014,40(7):166−172. [ZHANG H Y, WANG J J, CHEN Y F, et al. Optimization of steam distillation extraction of Zanthoxylum bungeanum essential oil by response surface methodology and essential volatile components analysis[J]. Food And Fermentation Industries,2014,40(7):166−172. doi: 10.13995/j.cnki.11-1802/ts.2014.07.017ZHANG H Y, WANG J J, CHEN Y F, et al. Optimization of steam distillation extraction of Zanthoxylum bungeanum essential oil by response surface methodology and essential volatile components analysis[J]. Food And Fermentation Industries, 2014, 40(7): 166-172. doi: 10.13995/j.cnki.11-1802/ts.2014.07.017 [25] 杨海荣, 马绍英, 赵利敏, 等. 响应面分析法优化西兰花离体细胞系萝卜硫素提取工艺[J]. 新宝登录入口(中国)有限公司,2012,33(15):206−209, 214. [YANG H R, MA S Y, ZHAO L M, et al. Optimization of extraction technique of sulforaphane from broccoli callus via by response surface methodology (RSM)[J]. Science and Technology of Food Industry,2012,33(15):206−209, 214. doi: 10.13386/j.issn1002-0306.2012.15.033YANG H R, MA S Y, ZHAO L M, et al. Optimization of extraction technique of sulforaphane from broccoli callus via by response surface methodology(RSM)[J]. Science and Technology of Food Industry, 2012, 33(15): 206-209, 214. doi: 10.13386/j.issn1002-0306.2012.15.033 [26] 王蕾, 陈依, 杨雅其, 等. 蓝莓花青素脂质体的制备及其稳定性研究[J]. 西北农林科技大学学报(自然科学版),2022,50(5):85−94. [WANG L, CHEN Y, YANG Y Q, et al. Preparation and stability of blueberry anthocyanin liposomes[J]. Journal of Northwest A&F University (Natural Science Edition),2022,50(5):85−94.WANG L, CHEN Y, YANG Y Q, et al. Preparation and stability of blueberry anthocyanin liposomes[J]. Journal of Northwest A&F University(Natural Science Edition), 2022, 50(5): 85-94. [27] 姚乐, 王诗意, 周斐, 等. 壳聚糖/花青素复合薄膜的制备及鱼肉新鲜度监测[J]. 包装工程,2022,43(9):83−91. [YAO L, WANG S Y, ZHOU F, et al. Preparation of chitosan/anthocyanin composite film for monitoring of fish freshness[J]. Packaging Engineering,2022,43(9):83−91. doi: 10.19554/j.cnki.1001-3563.2022.09.011YAO L, WANG S Y, ZHOU F, et al. Preparation of chitosan/anthocyanin composite film for monitoring of fish freshness[J]. Packaging Engineering, 2022, 43(9): 83-91. doi: 10.19554/j.cnki.1001-3563.2022.09.011 [28] BARRETO A C H, SANTIAGO V R, MAZZETTO S E, et al. Magnetic nanoparticles for a new drug delivery system to control quercetin releasing for cancer chemotherapy[J]. Journal of Nanoparticle Research,2011,13:6545−6553. doi: 10.1007/s11051-011-0559-9 [29] 陈程莉, 李丰泉, 刁倩, 等. 不同壁材对黑枸杞花青素微胶囊稳定性和缓释特性的影响[J]. 食品与发酵工业,2020,46(16):78−85. [CHEN C L, LI F Q, DIAO Q, et al. Effects of different wall materials on the stability and sustained-release characteristics of anthocyanin microcapsules of Lycium ruthenicum Murr[J]. Food and Fermentation Industries,2020,46(16):78−85. doi: 10.13995/j.cnki.11-1802/ts.023782CHEN C L, LI F Q, DIAO Q, et al. Effects of different wall materials on the stability and sustained-release characteristics of anthocyanin microcapsules of Lycium ruthenicum Murr[J]. Food and Fermentation Industries, 2020, 46(16): 78-85. doi: 10.13995/j.cnki.11-1802/ts.023782 [30] 姚惠芳, 董学艳, 景浩. 牛血清白蛋白与花青素纳米颗粒的特性及稳定性研究[J]. 食品科学,2014,35(1):1−6. [YAO H F, DONG X Y, JING H. Characteristics of bovine serum albumin-anthocyanin bioactive nanoparticles[J]. Food Science,2014,35(1):1−6. doi: 10.7506/spkx1002-6630-201401001YAO H F, DONG X Y, JING H. Characteristics of bovine serum albumin-anthocyanin bioactive nanoparticles[J]. Food Science, 2014, 35(1): 1-6. doi: 10.7506/spkx1002-6630-201401001 [31] 朱秀灵, 叶精勤, 盛伊健, 等. 体外模拟消化对苹果多酚及其抗氧化活性的影响[J]. 食品与发酵工业,2020,46(8):63−71. [ZHU X L, YE J Q, SHENG Y J, et al. Effects of in vitro simulated digestion on apple polyphenols and their antioxidant activities[J]. Food and Fermentation Industries,2020,46(8):63−71. doi: 10.13995/j.cnki.11-1802/ts.022747ZHU X L, YE J Q, SHENG Y J, et al. Effects of in vitro simulated digestion on apple polyphenols and their antioxidant activities[J]. Food and Fermentation Industries, 2020, 46(8): 63-71. doi: 10.13995/j.cnki.11-1802/ts.022747 [32] JAYWARDENA N, AATAWANA M I, WAISUNDARA V Y. The total antioxidant capacity, total phenolics content and starch hydrolase inhibitory activity of fruit juices following pepsin (gastric) and pancreatin (duodenal) digestion[J]. Journal für Verbraucherschutz and Lebensmittelsicherheit,2015,10(4):349−357. [33] TAGLIAZUCCHI D, VERZELLONI E, BERTOLINI D, et al. In vitro bio-accessibility and antioxidant activity of grape polyphenols[J]. Food Chemistry,2010,120(2):599−606. doi: 10.1016/j.foodchem.2009.10.030 -