• 食品科学与工程领域高质量科技期刊分级目录第一方阵T1
  • Scopus
  • FSTA
  • 北大核心期刊
  • 中国核心学术期刊RCCSE
  • DOAJ
  • JST China
  • 中国精品科技期刊
  • 中国农业核心期刊
  • CA
  • WJCI
  • 中国科技核心期刊CSTPCD
  • 中国生物医学SinoMed
中国精品科技期刊2020 食品青年科学家峰会

响应面法优化花青素/Fe3O4纳米复合物的制备工艺及其体外消化研究

牛芸 王晴 韩彬 彭晓莉

牛芸,王晴,韩彬,等. 响应面法优化花青素/Fe3O4纳米复合物的制备工艺及其体外消化研究[J]. 新宝登录入口(中国)有限公司,2023,44(13):167−175. doi:  10.13386/j.issn1002-0306.2022080100
引用本文: 牛芸,王晴,韩彬,等. 响应面法优化花青素/Fe3O4纳米复合物的制备工艺及其体外消化研究[J]. 新宝登录入口(中国)有限公司,2023,44(13):167−175. doi:  10.13386/j.issn1002-0306.2022080100
NIU Yun, WANG Qing, HAN Bin, et al. Optimization of Preparation Process and in Vitro Digestion Study of Anthocyanin/Fe3O4 Nanocomposites by Response Surface Methodology[J]. Science and Technology of Food Industry, 2023, 44(13): 167−175. (in Chinese with English abstract). doi:  10.13386/j.issn1002-0306.2022080100
Citation: NIU Yun, WANG Qing, HAN Bin, et al. Optimization of Preparation Process and in Vitro Digestion Study of Anthocyanin/Fe3O4 Nanocomposites by Response Surface Methodology[J]. Science and Technology of Food Industry, 2023, 44(13): 167−175. (in Chinese with English abstract). doi:  10.13386/j.issn1002-0306.2022080100

响应面法优化花青素/Fe3O4纳米复合物的制备工艺及其体外消化研究

doi: 10.13386/j.issn1002-0306.2022080100
基金项目: 四川省科学技术厅省级科技计划项目(2020YJ0169)。
详细信息
    作者简介:

    牛芸(1998−),女,硕士研究生,研究方向:植物化学物,E-mail:N1037325840@163.com

    通讯作者:

    彭晓莉(1979−),女,博士,副研究员,研究方向:植物化学物与疾病,E-mail:xiaopeng967@sohu.com

  • 中图分类号: TS201.4

Optimization of Preparation Process and in Vitro Digestion Study of Anthocyanin/Fe3O4 Nanocomposites by Response Surface Methodology

  • 摘要: 为了提高花青素的生物利用率,本研究采用共沉淀的方法制备花青素/Fe3O4纳米复合物。利用响应面法(Response Surface Method,RSM)优化花青素/Fe3O4纳米复合物的合成,并对花青素/Fe3O4纳米复合物进行粒径分析、Zeta电位测定、扫描电子显微镜、傅里叶变换红外光谱分析以及体外模拟消化实验。结果表明花青素/Fe3O4纳米复合物的最佳制备条件为花青素与Fe3O4的质量比为1:46,反应时间为19.6 h,反应温度为47 ℃,此工艺条件下花青素的包封率为87.51%。该纳米复合物粒径分布集中在100~1200 nm,且分布均匀,Zeta电位为−48.15 mV。通过扫描电子显微镜观察到花青素与Fe3O4纳米粒子间形成了表面光滑的球状颗粒。花青素/Fe3O4纳米复合物在1635、1083 cm−1处出现花青素C=O和C-H特征峰。体外消化实验得出花青素在胃液和肠液中的保留率为91.99%和46.23%,DPPH和ABTS+自由基清除能力在肠液中均提高(P<0.05)。因此,共沉淀法能够提高花青素的生物利用率,为花青素的高效使用提供了技术支持。
  • 图  1  矢车菊素-3-O-葡萄糖苷检测波长

    Figure  1.  Detection wavelength of cyanidin-3-O-glucoside

    图  2  花青素和Fe3O4质量比对包封率的影响

    Figure  2.  Effect of mass ratio of anthocyanin and Fe3O4 on encapsulation efficiency

    注:不同字母表示差异显著(P<0.05);图3~图4同。

    图  3  花青素和Fe3O4反应时间对包封率的影响

    Figure  3.  Effect of reaction time of anthocyanin and Fe3O4 on encapsulation efficiency

    图  4  花青素和Fe3O4反应温度对包封率的影响

    Figure  4.  Effect of reaction temperature of anthocyanin and Fe3O4 on encapsulation efficiency

    图  5  各因素交互作用对包封率的响应面和等高线图

    Figure  5.  Response surface plot and contour plot of the effects of each factor on the encapsulation efficiency

    图  6  Fe3O4纳米颗粒(a)、花青素/Fe3O4纳米复合物(b)的粒径分布

    Figure  6.  Particle size distributions of Fe3O4 (a) and Fe3O4/anthocyanin nanocomposites (b)

    图  7  花青素(a)、Fe3O4纳米粒子(b)、花青素/Fe3O4纳米复合物(c)的微观形貌

    Figure  7.  SEM images of anthocyanin (a), Fe3O4 nanoparticles (b), anthocyanin/Fe3O4 nanocomposites (c)

    图  8  花青素、Fe3O4和花青素/Fe3O4纳米复合物的傅里叶红外光谱

    Figure  8.  Fourier transformation infrared spectra of anthocyanin, Fe3O4 and anthocyanin/Fe3O4 nanocomposites

    图  9  模拟消化对花青素含量的影响

    Figure  9.  Effects of simulated digestion on anthocyanin content

    注:图中同一图例标注不同小写字母,表示在同一消化阶段,不同消化时间具有显著差异(P<0.05);图10图11同。

    图  10  模拟消化对纳米复合物DPPH自由基清除能力的影响

    Figure  10.  Effects of simulated digestion on the DPPH free radical scavenging ability of nanocomposites

    图  11  模拟消化对纳米复合物ABTS+自由基清除能力的影响

    Figure  11.  Effects of simulated digestion on the ABTS+ free radical scavenging ability of nanocomposites

    表  1  响应面试验因素水平设计

    Table  1.   Factors and levels for response surface test

    因素水平
    −101
    A质量比1:401:451:50
    B时间(h)162024
    C温度(℃)405060
    下载: 导出CSV

    表  2  响应面试验设计与结果

    Table  2.   Response surface design experiment conditions and results

    试验号ABCY(%)
    11−1081.89
    210−176.20
    300086.04
    4−1−1063.81
    501172.17
    600086.17
    701−175.95
    8−11079.99
    900088.78
    100−1−182.34
    1100086.10
    1200087.25
    1310181.09
    140−1163.63
    15−10153.66
    1611072.23
    17−10−181.77
    下载: 导出CSV

    表  3  Box-Behnken响应面模型的方差分析

    Table  3.   ANOVA for response surface model of Box-Behnken

    来源平方和自由度均方FP显著性
    模型1507.989167.5547.55<0.0001**
    A129.441129.4436.740.0005**
    B9.4019.402.670.1465
    C261.181261.1874.12<0.0001**
    AB166.931166.9347.380.0002**
    AC272.251272.2577.27<0.0001**
    BC55.73155.7315.820.0053**
    A2170.601170.6048.420.0002**
    B2152.731152.7343.350.0003**
    C2225.781225.7864.08<0.0001**
    残差24.6673.52
    失拟项19.1036.374.580.0879
    纯误差5.5641.39
    总离差1532.6516
    注:*P<0.05;**P<0.01。
    下载: 导出CSV

    表  4  花青素、Fe3O4和花青素/Fe3O4纳米复合物的Zeta电位

    Table  4.   Zeta potential of anthocyanin, Fe3O4 and anthocyanin/Fe3O4 nanocomposites

    材料电位(mV)平均电位(mV)
    花青素+10.41+11.02+11.63+11.02
    Fe3O4−58.18−58.78−59.39−58.78
    花青素/Fe3O4−47.55−48.15−48.75−48.15
    下载: 导出CSV
  • [1] 马蓉. 紫色蔬菜中花色苷抗糖功能及抗炎功能的评价[D]. 西宁: 青海大学, 2020

    MA R. Evaluation of anti-glycemic and anti-inflammatory function of anthocyanin in purple vegetables[D]. Xining: Qinghai University, 2020.
    [2] 张念, 彭怡霖, 陈细羽, 等. 超高效液相色谱法检测植物源性食品中花青素[J]. 分析科学学报,2022,38(1):17−23. [ZHANG N, PENG Y L, CHEN X Y, et al. Determination of anthocyanins in plant origin products by ultra-high performance liquid chromatography[J]. Journal of Analytical Science,2022,38(1):17−23. doi:  10.13526/j.issn.1006-6144.2022.01.004

    ZHANG N, PENG Y L, CHEN X Y, et al. Determination of anthocyanins in plant origin products by ultra-high performance liquid chromatography[J]. Journal of Analytical Science, 2022, 38(1): 17-23. doi:  10.13526/j.issn.1006-6144.2022.01.004
    [3] RU J Y, HAI B L, YANG Y, et al. Anticancer activities of proanthocyanidins from the plant Urceola huaitingii and their synergistic effects in combination with chemotherapeutics[J]. Fitoterapia,2016,112:175−182. doi:  10.1016/j.fitote.2016.05.015
    [4] TOYAMA Y, TOSHIMA S, HIRANO T, et al. Polyphenol contents, antioxidant activitie, and anti-cancer cell proliferation properties at each stage of fruit development in intersectional hybrids between highbush blueberry and shashanbo (Vaccinium bracteatum Thunb.)[J]. Journal of Berry Research,2021,11(4):689−704. doi:  10.3233/JBR-210713
    [5] 张勍, 汪晟坤, 连秀仪, 等. 夏黑葡萄花青素在D-半乳糖致衰老小鼠心肌细胞抗氧化和清除自由基中的作用[J]. 河南医学研究,2019,28(20):3649−3652. [ZHANG Q, WANG S K, LIAN X Y, et al. The antioxidant and free radical scavenging effects of Xiahei grape anthocyanin in myocardialcells of aging mice induced by D-galactose[J]. Henan Medical Research Henan Med Res,2019,28(20):3649−3652. doi:  10.3969/j.issn.1004-437X.2019.20.001

    ZHANG Q, WANG S K, LIAN X Y, et al. The antioxidant and free radical scavenging effects of Xiahei grape anthocyanin in myocardialcells of aging mice induced by D-galactose[J]. Henan Medical Research Henan Med Res, 2019, 28(20): 3649-3652. doi:  10.3969/j.issn.1004-437X.2019.20.001
    [6] 徐青, 王代波, 刘国华, 等. 花青素稳定性影响因素及改善方法研究进展[J]. 食品研究与开发,2020,41(7):218−224. [XU Q, WANG D B, LIU G H, et al. Influencing factors and improving methods of anthocyanin stability[J]. Food Research and Development,2020,41(7):218−224. doi:  10.12161/j.issn.1005-6521.2020.07.037

    XU Q, WANG D B, LIU G H, et al. Influencing factors and improving methods of anthocyanin stability[J]. Food Research and Development, 2020, 41(7): 218-224. doi:  10.12161/j.issn.1005-6521.2020.07.037
    [7] 蒋希芝. 桑椹花青素的结构修饰和纳米复合物及其生物学特性研究[D]. 镇江: 江苏科技大学, 2020

    JIANG X Z. Structural modification and nanocomposites of mulberry anthocyanin and its biological characteristics[D]. Zhenjiang: Jiangsu University of Science and Technology, 2020.
    [8] CHEN B H, STEPHEN I B. Nanoemulsion and nanoliposome based strategies for improving anthocyanin stability and bioavailability[J]. Nutrients,2019,11(5):1052. doi:  10.3390/nu11051052
    [9] RAFIEE Z, BARZEGAR M, SAHARI M A, et al. Nanoliposomal carriers for improvement the bioavailability of high-valued phenolic compounds of pistachio green hull extract[J]. Food Chemistry,2017,220:115−122. doi:  10.1016/j.foodchem.2016.09.207
    [10] MA Y Y, XU J J, JIANG S S, et al. Effect of chitosan coating on the properties of nanoliposomes loaded with oyster protein hydrolysates: Stability during spray-drying and freeze-drying[J]. Food Chemistry,2022,385:132−603.
    [11] WANG L, ZHOU B Q, LI Y H, et al. Lactoferrin modification of berberine nanoliposomes enhances the neuroprotective effects in a mouse model of Alzheimer's disease[J]. Neural Regeneration Research,2023,18(1):226−232. doi:  10.4103/1673-5374.344841
    [12] SUZANA G C, VICTOR H S A, ALINE M D S, et al. Advances and challenges in nanocarriers and nanomedicines for veterinary application[J]. International Journal of Pharmaceutics,2020,580:119−214.
    [13] 汤宇峰, 李丽敏, 李嘉琪. 浅谈四氧化三铁纳米粒子的制备方法与利用现状[J]. 安徽化工,2022,48(1):14−16. [TANG Y F, LI L M, LI J Q. Research status and application prospect of oral in-situ gel[J]. Anhui Chemical Industry,2022,48(1):14−16. doi:  10.3969/j.issn.1008-553X.2022.01.004

    TANG Y F, LI L M, LI J Q. Research status and application prospect of oral in-situ gel[J]. Anhui Chemical Industry, 2022, 48(1): 14-16. doi:  10.3969/j.issn.1008-553X.2022.01.004
    [14] 史宇哲. 植物原花青素功能化的四氧化三铁制备及应用研究[D]. 哈尔滨: 东北林业大学, 2020

    SHI Y Z. Preparation and application of functionalized iron tetroxide from proanthocyanidins[D]. Harbin: Northeast Forestry University, 2020.
    [15] VIVIAN C I, LUIZ G L. Black rice (Oryza sativa L.): A review of its historical aspects, chemical composition, nutritional and functional properties, and applications and processing technologies[J]. Food Chemistry,2019,301:125−304.
    [16] 刘长姣, 郑霞, 熊湘炜, 等. 分光光度法测定黑米花青素方法的建立[J]. 粮食与油脂,2019,32(1):73−77. [LIU C J, ZHENG X, XIONG X W, et al. Detection of anthocyanin in black rice by spectrophotometry[J]. Cereals& Oils,2019,32(1):73−77. doi:  10.3969/j.issn.1008-9578.2019.01.020

    LIU C J, ZHENG X, XIONG X W, et al. Detection of anthocyanin in black rice by spectrophotometry[J]. Cereals&Oils, 2019, 32(1): 73-77. doi:  10.3969/j.issn.1008-9578.2019.01.020
    [17] CHEN K L, NI X J, WANG L C, et al. Evaluation of the stability and the encapsulation efficiency of W/O/W; multiple emulsions by electrochemical determination[J]. Journal of Dispersion Science and Technology,2020,41(13):1949−1955. doi:  10.1080/01932691.2019.1645021
    [18] 李玉壬, 王瑞, 王旭捷, 等. 茶多酚在模拟胃肠消化过程中含量及活性的变化规律[J]. 现代食品科技,2021,37(7):115−120, 22. [LI Y R, WANG R, WANG X J, et al. Changes in content and antioxidant activity of tea polyphenols during in vitro simulated gastrointestinal digestion[J]. Modern Food Science & Technology,2021,37(7):115−120, 22. doi:  10.13982/j.mfst.1673-9078.2021.7.0025

    LI Y R, WANG R, WANG X J, et al. Changes in content and antioxidant activity of tea polyphenols during in vitro simulated gastrointestinal Digestion[J]. Modern Food Science & Technology, 2021, 37(7): 115-120, 22. doi:  10.13982/j.mfst.1673-9078.2021.7.0025
    [19] 金珊珊. 燕麦β-葡聚糖的氧化及载姜黄素纳米复合物的研究[D]. 福州: 福州大学, 2018

    JIN S S. Study on the oxidation of β-glucan and curcumin-loaded oxidized β-glucan nanocomposite[D]. Fuzhou: Fuzhou University, 2018.
    [20] 朱文卿. 牛蒡多糖-绿原酸复合物的制备、结构表征及抗氧化活性研究[D]. 泰安: 山东农业大学, 2022

    ZHU W Q. Preparation, structure characterization and antioxidant activity of burdock polysaccharide-chlorogenic acid complex[D]. Taian: Shandong Agricultural University, 2022.
    [21] 刘凯. 蓝莓-绿茶复合饮料的制备研究[D]. 济南: 齐鲁工业大学, 2021

    LIU K. Study on preparation of blueberry-green tea compound beverage[D]. Jinan: Qilu University of Technology, 2021.
    [22] 王立爽, 蒋裕琪, 于凤桐, 等. 响应面法优化紫甘薯花青素微胶囊制备工艺[J]. 新宝登录入口(中国)有限公司,2017,38(19):191−196. [WANG L S, JIANG Y Q, YU F T, et al. Optimization of purple sweet potato anthocyanins microcapsules by response surface methodology[J]. Science and Technology of Food Industry,2017,38(19):191−196. doi:  10.13386/j.issn1002-0306.2017.19.035

    WANG L S, JIANG Y Q, YU F T, et al. Optimization of purple sweet potato anthocyanins microcapsules by response surface methodology[J]. Science and Technology of Food Industry, 2017, 38(19): 191-196. doi:  10.13386/j.issn1002-0306.2017.19.035
    [23] 李琳, 张国强, 石晓峰. Box-Behnken响应面法优化复方红黄口含片的醇提工艺[J]. 华西药学杂志,2020,35(4):416−423. [LI L, ZHANG G Q, SHI X F. Optimization of the alcohol extraction process of compound honghuang buccal tablets by Box-Behnken response surface method[J]. West China Journal of Pharmaceutical Sciences,2020,35(4):416−423. doi:  10.13375/j.cnki.wcjps.2020.04.015

    LI L, ZHANG G Q, SHI X F. Optimization of the alcohol extraction process of compound honghuang buccal tablets by Box-Behnken response surface method[J]. West China Journal of Pharmaceutical Sciences, 2020, 35(4): 416-423. doi:  10.13375/j.cnki.wcjps.2020.04.015
    [24] 张怀予, 王军节, 陈园凡, 等. 水蒸气蒸馏法提取花椒精油及挥发性成分分析[J]. 食品与发酵工业,2014,40(7):166−172. [ZHANG H Y, WANG J J, CHEN Y F, et al. Optimization of steam distillation extraction of Zanthoxylum bungeanum essential oil by response surface methodology and essential volatile components analysis[J]. Food And Fermentation Industries,2014,40(7):166−172. doi:  10.13995/j.cnki.11-1802/ts.2014.07.017

    ZHANG H Y, WANG J J, CHEN Y F, et al. Optimization of steam distillation extraction of Zanthoxylum bungeanum essential oil by response surface methodology and essential volatile components analysis[J]. Food And Fermentation Industries, 2014, 40(7): 166-172. doi:  10.13995/j.cnki.11-1802/ts.2014.07.017
    [25] 杨海荣, 马绍英, 赵利敏, 等. 响应面分析法优化西兰花离体细胞系萝卜硫素提取工艺[J]. 新宝登录入口(中国)有限公司,2012,33(15):206−209, 214. [YANG H R, MA S Y, ZHAO L M, et al. Optimization of extraction technique of sulforaphane from broccoli callus via by response surface methodology (RSM)[J]. Science and Technology of Food Industry,2012,33(15):206−209, 214. doi:  10.13386/j.issn1002-0306.2012.15.033

    YANG H R, MA S Y, ZHAO L M, et al. Optimization of extraction technique of sulforaphane from broccoli callus via by response surface methodology(RSM)[J]. Science and Technology of Food Industry, 2012, 33(15): 206-209, 214. doi:  10.13386/j.issn1002-0306.2012.15.033
    [26] 王蕾, 陈依, 杨雅其, 等. 蓝莓花青素脂质体的制备及其稳定性研究[J]. 西北农林科技大学学报(自然科学版),2022,50(5):85−94. [WANG L, CHEN Y, YANG Y Q, et al. Preparation and stability of blueberry anthocyanin liposomes[J]. Journal of Northwest A&F University (Natural Science Edition),2022,50(5):85−94.

    WANG L, CHEN Y, YANG Y Q, et al. Preparation and stability of blueberry anthocyanin liposomes[J]. Journal of Northwest A&F University(Natural Science Edition), 2022, 50(5): 85-94.
    [27] 姚乐, 王诗意, 周斐, 等. 壳聚糖/花青素复合薄膜的制备及鱼肉新鲜度监测[J]. 包装工程,2022,43(9):83−91. [YAO L, WANG S Y, ZHOU F, et al. Preparation of chitosan/anthocyanin composite film for monitoring of fish freshness[J]. Packaging Engineering,2022,43(9):83−91. doi:  10.19554/j.cnki.1001-3563.2022.09.011

    YAO L, WANG S Y, ZHOU F, et al. Preparation of chitosan/anthocyanin composite film for monitoring of fish freshness[J]. Packaging Engineering, 2022, 43(9): 83-91. doi:  10.19554/j.cnki.1001-3563.2022.09.011
    [28] BARRETO A C H, SANTIAGO V R, MAZZETTO S E, et al. Magnetic nanoparticles for a new drug delivery system to control quercetin releasing for cancer chemotherapy[J]. Journal of Nanoparticle Research,2011,13:6545−6553. doi:  10.1007/s11051-011-0559-9
    [29] 陈程莉, 李丰泉, 刁倩, 等. 不同壁材对黑枸杞花青素微胶囊稳定性和缓释特性的影响[J]. 食品与发酵工业,2020,46(16):78−85. [CHEN C L, LI F Q, DIAO Q, et al. Effects of different wall materials on the stability and sustained-release characteristics of anthocyanin microcapsules of Lycium ruthenicum Murr[J]. Food and Fermentation Industries,2020,46(16):78−85. doi:  10.13995/j.cnki.11-1802/ts.023782

    CHEN C L, LI F Q, DIAO Q, et al. Effects of different wall materials on the stability and sustained-release characteristics of anthocyanin microcapsules of Lycium ruthenicum Murr[J]. Food and Fermentation Industries, 2020, 46(16): 78-85. doi:  10.13995/j.cnki.11-1802/ts.023782
    [30] 姚惠芳, 董学艳, 景浩. 牛血清白蛋白与花青素纳米颗粒的特性及稳定性研究[J]. 食品科学,2014,35(1):1−6. [YAO H F, DONG X Y, JING H. Characteristics of bovine serum albumin-anthocyanin bioactive nanoparticles[J]. Food Science,2014,35(1):1−6. doi:  10.7506/spkx1002-6630-201401001

    YAO H F, DONG X Y, JING H. Characteristics of bovine serum albumin-anthocyanin bioactive nanoparticles[J]. Food Science, 2014, 35(1): 1-6. doi:  10.7506/spkx1002-6630-201401001
    [31] 朱秀灵, 叶精勤, 盛伊健, 等. 体外模拟消化对苹果多酚及其抗氧化活性的影响[J]. 食品与发酵工业,2020,46(8):63−71. [ZHU X L, YE J Q, SHENG Y J, et al. Effects of in vitro simulated digestion on apple polyphenols and their antioxidant activities[J]. Food and Fermentation Industries,2020,46(8):63−71. doi:  10.13995/j.cnki.11-1802/ts.022747

    ZHU X L, YE J Q, SHENG Y J, et al. Effects of in vitro simulated digestion on apple polyphenols and their antioxidant activities[J]. Food and Fermentation Industries, 2020, 46(8): 63-71. doi:  10.13995/j.cnki.11-1802/ts.022747
    [32] JAYWARDENA N, AATAWANA M I, WAISUNDARA V Y. The total antioxidant capacity, total phenolics content and starch hydrolase inhibitory activity of fruit juices following pepsin (gastric) and pancreatin (duodenal) digestion[J]. Journal für Verbraucherschutz and Lebensmittelsicherheit,2015,10(4):349−357.
    [33] TAGLIAZUCCHI D, VERZELLONI E, BERTOLINI D, et al. In vitro bio-accessibility and antioxidant activity of grape polyphenols[J]. Food Chemistry,2010,120(2):599−606. doi:  10.1016/j.foodchem.2009.10.030
  • 加载中
图(11) / 表(4)
计量
  • 文章访问数:  30
  • HTML全文浏览量:  26
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-08-10
  • 网络出版日期:  2023-05-22
  • 刊出日期:  2023-07-01

目录

    /

    返回文章
    返回