• 食品科学与工程领域高质量科技期刊分级目录第一方阵T1
  • Scopus
  • FSTA
  • 北大核心期刊
  • 中国核心学术期刊RCCSE
  • DOAJ
  • JST China
  • 中国精品科技期刊
  • 中国农业核心期刊
  • CA
  • WJCI
  • 中国科技核心期刊CSTPCD
  • 中国生物医学SinoMed
中国精品科技期刊2020 食品青年科学家峰会

灵芝漆酶在黑曲霉中的分泌表达及性质研究

刘雨 于涛 张宇鑫 张会 刘天奇 李杰

刘雨,于涛,张宇鑫,等. 灵芝漆酶在黑曲霉中的分泌表达及性质研究[J]. 新宝登录入口(中国)有限公司,2023,44(13):119−126. doi:  10.13386/j.issn1002-0306.2022080103
引用本文: 刘雨,于涛,张宇鑫,等. 灵芝漆酶在黑曲霉中的分泌表达及性质研究[J]. 新宝登录入口(中国)有限公司,2023,44(13):119−126. doi:  10.13386/j.issn1002-0306.2022080103
LIU Yu, YU Tao, ZHANG Yuxin, et al. Secretory Expression and Properties of Laccase from Ganoderma lucidum in Aspergillus niger[J]. Science and Technology of Food Industry, 2023, 44(13): 119−126. (in Chinese with English abstract). doi:  10.13386/j.issn1002-0306.2022080103
Citation: LIU Yu, YU Tao, ZHANG Yuxin, et al. Secretory Expression and Properties of Laccase from Ganoderma lucidum in Aspergillus niger[J]. Science and Technology of Food Industry, 2023, 44(13): 119−126. (in Chinese with English abstract). doi:  10.13386/j.issn1002-0306.2022080103

灵芝漆酶在黑曲霉中的分泌表达及性质研究

doi: 10.13386/j.issn1002-0306.2022080103
基金项目: 国产雪茄烟生物发酵技术研究(202115010534-JS-178)。
详细信息
    作者简介:

    刘雨(1997−),女,硕士研究生,研究方向:丝状真菌表达系统,E-mail:s200901077@neau.edu.cn

    通讯作者:

    李杰(1972−),男,博士,教授,研究方向:丝状真菌表达系统,E-mail:lijie_neau@126.com

  • 中图分类号: Q814.4

Secretory Expression and Properties of Laccase from Ganoderma lucidum in Aspergillus niger

  • 摘要: 前期通过分泌蛋白质谱分析和转录组测序,确定了一株高产漆酶的白腐菌为灵芝,其分泌漆酶的编码基因为lcc1。本研究PCR扩增lcc1基因的基因组序列(lcc1-D)和cDNA序列(lcc1-C),分别构建表达载体(pSZH6R-lcc1-D、pSZH6R-lcc1-C)。通过农杆菌介导法转化黑曲霉TH-2,筛选出在糖化酶基因glaA位点发生同源重组的纯合黑曲霉转化子。摇瓶发酵后取发酵液上清进行Native-PAGE检测和酶活测定,结果表明,重组菌株lcc1-C的漆酶表达量和酶活力高于lcc1-D,酶活力最高值分别为431.94 U/L和218.06 U/L。Real-time PCR结果表明,lcc1-C中的漆酶mRNA水平是lcc1-D的3.38倍。对重组漆酶进行酶学性质分析,发现其最适反应温度为60 ℃、最适pH为3.5。在染料脱色实验中发现重组漆酶对孔雀石绿、中性红、甲基橙具有明显脱色作用,介体存在时能增强漆酶对染料的脱色效果,对中性红脱色效率最强,48 h脱色率可达到91.21%。为改善重组漆酶的折叠,向重组菌株lcc1-C的发酵培养基中添加渗透调节剂,结果显示,在添加0.4 mol/L TMAO时酶活力达到1301.67 U/L,提高了1.97倍;在添加0.5 mol/L脯氨酸时酶活力达到2037.22 U/L,提高了3.64倍;在添加0.5 mol/L甘氨酸时酶活力达到1434.03 U/L,酶活力提高了2.27倍。
  • 图  1  重组表达载体pSZH6R-lcc1-D、pSZH6R-lcc1-C构建

    Figure  1.  Construction of recombinant expression vectors pSZH6R-lcc1-D and pSZH6R-lcc1-C

    图  2  目的基因扩增结果

    Figure  2.  Cloning of target gene by PCR

    注:M:Marker;1:lcc1-D目的条带;2:lcc1-C目的条带。

    图  3  重组转化子PCR酶切鉴定结果

    Figure  3.  Identification results of PCR digestion of recombinant transformants

    注:M:Marker;0:水;0:出发菌株TH-2;A:pSZH6R-lcc1-D质粒;B:pSZH6R-lcc1-C质粒;1~2:转化子PCR酶切结果。

    图  4  重组菌株中漆酶Native-PAGE电泳分析

    Figure  4.  Analysis of laccase in recombinant strains by Native-PAGE electrophoresis

    注:M:Marker;0:TH-2;A:4~11 d重组菌株lcc1-D发酵液;B:4~11 d重组菌株lcc1-C发酵液。

    图  5  重组菌株中漆酶酶活力测定结果

    Figure  5.  Results of laccase activity in recombinant strains

    图  6  重组菌株中漆酶基因转录水平的荧光定量PCR检测结果

    Figure  6.  Real-time PCR results of laccase gene transcription level in recombinant strains

    注:****表示在0.0001水平上菌株之间具有显著差异(n=3)。

    图  7  不同温度下重组漆酶的酶活性

    Figure  7.  Enzymatic activity of recombinant laccase at different temperatures

    图  8  不同pH下重组漆酶的酶活性

    Figure  8.  Enzymatic activity of recombinant laccase at different pH

    图  9  重组漆酶对4种染料的脱色效果

    Figure  9.  Decolorization of 4 dyes by laccase in recombinant strains

    图  10  固体发酵培养基平板上重组菌株的形态

    Figure  10.  Morphology of recombinant strains on solid fermentation medium plates

    图  11  3种渗透调节剂对重组菌株lcc1-C产漆酶的影响

    Figure  11.  Effects of three osmotic regulators on laccase production by recombinant strain lcc1-C

    表  1  PCR引物序列

    Table  1.   PCR primer sequence

    引物名称引物序列(5'-3')
    P1:lcc1-senseTCTAGAATCGGGCCCACGACCGAC
    P2:lcc1-antisenseAAGCTTACTGGTCATCGGGAGAGAG
    P3:YXgla.3pCGCTATAGGCTGGTTCTCC
    P4:HYXgla.4pTCGGCTATTATTGAACTGGG
    P5:lcc1qPCR-senseCAGCGTTACTCGTTCGTGCT
    P6:lcc1qPCR-antisenseGAGAGAGCGCGTTGTACGTC
    P7:actA-RT-senseCCACGAGACCACCTTCAACTCCA
    P8:actA-RT-antisenseCCACCGATCCAGACGGAGTACTTGC
    下载: 导出CSV
  • [1] SU J, FU J, SILVA C, et al. Can laccase-assisted processing conditions influence the structure of the reaction products[J]. Trends in Biotechnology,2019,37(7):683−686. doi:  10.1016/j.tibtech.2019.03.006
    [2] DENG H M, SHAO K, LIANG J H, et al. Source of laccase and research progress on carriers for laccase immobilization[J]. Biotechnology Bulletin,2017,33(6):10−15.
    [3] MAYOLO-DELOISA K, GONZÁLEZ-GONZÁLEZ M, RITO-PALOMARES M. Laccases in food industry: Bioprocessing, potential industrial and biotechnological applications[J]. Frontiers in Bioengineering and Biotechnology,2020,24(8):222.
    [4] DENG M. Research progress on microbial sources of laccase and its applications in food industry[C]//Proceedings of the 2018 3rd International Conference on Advances in Materials, Mechatronics and Civil Engineering (ICAMMCE 2018), 2018.
    [5] BHAMARE H M, SAYYED R Z, SAPNA, et al. Tree bark scrape fungus: A potential source of laccase for application in bioremediation of non-textile dyes[J]. PloS One,2021,16(1):e0245183.
    [6] PATEL N, SHAHANE S, SHIVAM S, et al. Mode of action, properties, production, and application of laccase: A review[J]. Recent Patents on Biotechnology,2019,13(1):19−32. doi:  10.2174/1872208312666180821161015
    [7] PARASCHIV G, FERDES M, IONESCU M, et al. Laccases—versatile enzymes used to reduce environmental pollution[J]. Energies,2022,15(5):1−31.
    [8] WANG, LI, ZHENG, et al. The soybean laccase gene family: Evolution and possible roles in plant defense and stem strength selection[J]. Genes,2019,10(9):701. doi:  10.3390/genes10090701
    [9] CEN L, JZAB D, GDB C, et al. Developing Aspergillus niger as a cell factory for food enzyme production[J]. Biotechnology advances,2020,44(15):107630.
    [10] 王兴吉, 伏圣秘, 王克芬, 等. 一株产酸性蛋白酶的黑曲霉菌株及其应用: 中国, 112501032A[P]. 2021-03-16. [WANG Xingji, FU ShengMi, WANG KeFen, et al. A strain Aspergillus strains of acid protease and its application: China, CN112501032A[P]. 2021-03-16.
    [11] SHAHEEN R, ASGHER M, HUSSAIN F, et al. Immobilized lignin peroxidase from Ganoderma lucidum IBL-05 with improved dye decolorization and cytotoxicity reduction properties[J]. International Journal of Biological Macromolecules,2017,103:57−64.
    [12] PRABIN S, BISHNU J, JARINA J, et al. Isolation and physicochemical characterization of laccase from Ganoderma lucidum-CDBT1 isolated from its native habitat in nepal[J]. BioMed Research International,2016,2016:3238909.
    [13] ZHUO R, HE F, ZHANG X, et al. Characterization of a yeast recombinant laccase rLAC-EN3-1 and its application in decolorizing synthetic dye with the coexistence of metal ions and organic solvents[J]. Biochemical Engineering Journal,2015,93:63−72. doi:  10.1016/j.bej.2014.09.004
    [14] 李杰, 张贺, 王欣, 等. 多拷贝脂肪酶基因在黑曲霉中表达研究[J]. 东北农业大学学报,2018,49(4):49−58. [LI Jie, ZHANG He, WANG Xin, et al. Expression of multi copy lipase gene in Aspergillus niger[J]. Journal of Northeast Agricultural University,2018,49(4):49−58. doi:  10.19720/j.cnki.issn.1005-9369.2018.04.006

    LI Jie, ZHANG He, WANG Xin, et al. Expression of multi copy lipase gene in Aspergillus niger[J]. Journal of Northeast Agricultural University, 2018, 49(4): 49-58. doi:  10.19720/j.cnki.issn.1005-9369.2018.04.006
    [15] 付时雨, 余惠生. 贝壳状革耳菌在固体及液体培养过程漆酶同工酶的产生研究[J]. 纤维素科学与技术,1998(3):32−7. [FU Shiyu, YU Huisheng. Studies on laccases isoforms produced by Panus conchatus during the culture of solid state and submerged[J]. Journal of Cellulose Science and Technology,1998(3):32−7. doi:  10.16561/j.cnki.xws.1998.03.006

    FU Shiyu, YU Huisheng. Studies on laccases isoforms produced by Panus conchatus during the culture of solid state and submerged[J]. Journal of Cellulose Science and Technology, 1998(3): 32-7. doi:  10.16561/j.cnki.xws.1998.03.006
    [16] ZHANG C, SUN J, JIE B I, et al. The study of enzymatic properties of edible fungi laccase SJ-1 and the degradation of aflatoxins B_1 by the edible fungi laccase[J]. Journal of Nuclear Agricultural Sciences,2017,31(7):1317−1322.
    [17] 李杰, 李双, 于盛竹, 等. 凤尾菇(Pleurotus sajor-caju)漆酶Lac4基因在黑曲霉中表达研究[J]. 东北农业大学学报,2017,48(4):8. [LI Jie, LI Shuang, YU Shengzhu, et al. Expression of Pleurotus sajor-caju laccase Lac4 in Aspergillus niger[J]. Journal of Northeast Agricultural University,2017,48(4):8.

    LI Jie, LI Shuang, YU Shengzhu, et al. Expression of Pleurotus sajor-caju laccase Lac4 in Aspergillus niger[J]. Journal of Northeast Agricultural University, 2017, 48(4): 8.
    [18] RASHID N, THAPLIYAL C, CHAUDHURI CHATTOPADHYAY P. Osmolyte induced enhancement of expression and solubility of human dihydrofolate reductase: An in vivo study[J]. Int J Biol Macromol,2017,103:1044−1053. doi:  10.1016/j.ijbiomac.2017.05.143
    [19] MANAVALAN T, MANAVALAN A, THANGAVELU K P, et al. Characterization of optimized production, purification and application of laccase from Ganoderma lucidum[J]. Biochemical Engineering Journal,2013,70:106−14. doi:  10.1016/j.bej.2012.10.007
    [20] SI J, PENG F, CUI B. Purification, biochemical characterization and dye decolorization capacity of an alkali-resistant and metal-tolerant laccase from Trametes pubescens[J]. Bioresour Technol,2013,128(51):49−57.
    [21] ZHENG F, AN Q, MENG G, et al. A novel laccase from white rot fungus Trametes orientalis: Purification, characterization, and application[J]. International Journal of Biological Macromolecules,2017,102:758−770. doi:  10.1016/j.ijbiomac.2017.04.089
    [22] YI L, GANG L, HHN C, et al. Advances in thermostable laccase and its current application in lignin-first biorefinery: A review[J]. Bioresour Technol,2020,298:122511. doi:  10.1016/j.biortech.2019.122511
    [23] 吴怡, 马鸿飞, 曹永佳, 等. 白腐真菌落叶松锈迷孔菌产漆酶液体培养基的优化及其对染料的脱色作用[J]. 生物技术通报,2020,36(1):45−59. [WU Yi, MA Hongfei, CAO Yongjia. Medium optimization for the laccase production by white rot fungus Porodaedalea laricis and its dye decolorizing capacity[J]. Biotechnology Bulletin,2020,36(1):45−59. doi:  10.13560/j.cnki.biotech.bull.1985.2019-0974

    WU Yi, MA Hongfei, CAO Yong-jia. Medium Optimization for the Laccase Production by White Rot Fungus Porodaedalea laricis and Its Dye Decolorizing Capacity[J]. Biotechnology Bulletin, 2020, 36(1): 45-59. doi:  10.13560/j.cnki.biotech.bull.1985.2019-0974
    [24] ALVARADO-RAMíREZ L, ROSTRO-ALANIS M, RODRíGUEZ-RODRíGUEZ J, et al. Exploring current tendencies in techniques and materials for immobilization of laccases-A review[J]. International Journal of Biological Macromolecules,2021,181(30):683−696.
    [25] PLATE L, WISEMAN R L. Regulating secretory proteostasis through the unfolded protein response: From function to therapy[J]. Trends in Cell Biology,2017:722−37.
    [26] HEIMEL K. Unfolded protein response in filamentous fungi-implications in biotechnology[J]. Applied Microbiology & Biotechnology,2015,99(1):121−132.
    [27] NAIRA R, CHARU T, PRATIMA C (Chattopadhyay), et al. Osmolyte induced enhancement of expression and solubility of human dihydrofolate reductase: An in vivo study[J]. International Journal of Biological Macromolecules:Structure, Function and Interactions,2017,103:1044−1053.
  • 加载中
图(11) / 表(1)
计量
  • 文章访问数:  33
  • HTML全文浏览量:  17
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-08-10
  • 网络出版日期:  2023-05-21
  • 刊出日期:  2023-07-01

目录

    /

    返回文章
    返回