Preparation of Sulfated Xylans and Its in Vitro Proliferation of Probiotics
-
摘要: 本研究旨在确定硫酸化木聚糖对益生菌生长的影响,根据氨基磺酸-N,N-二甲基甲酰胺法对木聚糖(xylan,Xyl)进行化学改性,产生硫酸化木聚糖(sulfated xylan,SXY)。采用傅里叶红外光谱、扫描电子显微镜和刚果红实验对SXY进行结构表征,利用德氏乳杆菌保加利亚亚种GIM1.155、植物乳杆菌GIM1.191、短乳杆菌GIM1.773和嗜热链球菌GIM1.540共4种肠道益生菌对其体外增殖作用进行研究。结果表明:红外光谱显示SXY在1243、1052和894 cm−1处分别出现由S=O伸缩振动、C—O拉伸和C—O—SO3基团对称C—O—S伸缩振动引起的特征吸收峰。扫描电镜显示得到表面结构平滑度增加的SXY。刚果红实验显示SXY具有三螺旋结构。采用BaCl2-明胶比浊法测得SXY取代度为0.341。体外实验结果显示SXY对益生菌体外增殖最佳浓度为2.0%,培养10 h后观察到快速生长和增殖增加。所获结果表明,SXY对益生菌的生长有促进作用,是维持肠道健康的益生元替代物。Abstract: This study aimed to determine the effect of sulfated xylans on the growth of probiotics. Xylan (Xyl) was chemically modified using the sulfamic acid-N,N-dimethylformamide method to produce sulfated xylan (SXY). The SXY was characterized by Fourier infrared spectroscopy (FT-IR), scanning electron microscope (SEM) and Congo red experiment. The Xyl and SXY were tested for their in vitro prebiotic effects using four strains of intestinal microflora, including Lactobacillus delbrueckii subsp. bulgaricus (GIM1.155), L. plantarum (GIM1.191), L. brevis (GIM1.773), and Streptococcus thermophilus (GIM1.540). From the recorded infrared spectra, vibrational bands for SXY were observed at 894, 1052 and 1243 cm−1, they could be assigned to the C—O—S vibration of a C—O—SO3, C—O stretched and S=O stretching vibrations. The results of scanning electron microscopy showed that the surface structure of SXY increased smoothness. Congo red experiment revealed that SXY had a triple helix structure. The substitution degree of SXY measured using a BaCl2-gelatin turbidimeter was 0.341. In vitro experiment showed that the optimum concentration of SXY for the in vitro probiotic growth was 2.0%, rapid growth and increased proliferation were observed after 10 h of culture. The results obtained suggest that SXY could promote probiotic growth. It is an alternate source of prebiotics for maintaining gut health.
-
Key words:
- xylan (Xyl) /
- sulfation /
- probiotics /
- in vitro proliferation /
- prebiotics
-
图 4 不同浓度的SXY对德氏乳杆菌保加利亚亚种GIM1.155(A)、嗜热链球菌GIM1.540(B)、植物乳杆菌GIM1.191(C)和短乳杆菌GIM1.773(D)生长的影响
Figure 4. Effects of different concentrations of SXY sample on the growth of probiotics L. delbrueckii subsp. bulgaricus GIM1.155 (A), S. thermophilus GIM1.540 (B), L. plantarum GIM1.191 (C), and L. brevis GIM1.773 (D)
注:不同小写字母表示同一浓度下差异显著(P<0.05)。
图 5 最佳浓度下的SXY对德氏乳杆菌保加利亚亚种GIM1.155(A)、嗜热链球菌GIM1.540(B)、植物乳杆菌GIM1.191(C)和短乳杆菌GIM1.773(D)生长曲线的影响
Figure 5. Effects of optimal concentrations of SXY sample on the growth curve of probiotics L. delbrueckii subsp. bulgaricus GIM1.155 (A), S. thermophilus GIM1.540 (B), L. plantarum GIM1.191 (C), and L. brevis GIM1.773 (D)
表 1 不同浓度SXY对4种益生菌pH的影响
Table 1. Effects of different concentrations of SXY on pH by four types of probiotics
益生菌 样品 浓度(%) 0.5 1.0 1.5 2.0 3.0 德氏乳杆菌
保加利亚亚
种GIM1.155SXY 5.54±0.01a 5.31±0.01b 5.29±0.01b 5.19±0.01b 5.21±0.01b Xyl 5.49±0.01b 5.41±0.01a 5.37±0.00a 5.29±0.01a 5.30±0.00a FOS 5.37±0.01c 5.25±0.02c 5.19±0.00c 5.18±0.01b 5.18±0.01c 嗜热链球菌
GIM1.540SXY 5.80±0.02a 5.78±0.02a 5.54±0.01a 5.46±0.02a 5.46±0.02a Xyl 5.76±0.01b 5.66±0.02b 5.41±0.01b 5.34±0.01b 5.34±0.02b FOS 5.64±0.01c 5.52±0.01c 5.32±0.02c 5.25±0.01c 5.24±0.01c 植物乳杆菌
GIM1.191SXY 5.51±0.00a 5.43±0.00a 5.41±0.00a 5.37±0.01a 5.36±0.01a Xyl 5.45±0.02b 5.42±0.01a 5.36±0.02b 5.32±0.01b 5.32±0.01b FOS 5.37±0.01c 5.32±0.00b 5.27±0.01c 5.20±0.01c 5.20±0.01c 短乳杆菌
GIM1.773SXY 5.49±0.01a 5.42±0.01a 5.37±0.01a 5.40±0.00a 5.41±0.00a Xyl 5.41±0.01b 5.29±0.01c 5.29±0.02b 5.23±0.01b 5.22±0.01b FOS 5.37±0.01c 5.32±0.01b 5.18±0.01c 5.12±0.01c 5.12±0.01c 注:同列不同小写字母表示同一菌种不同样品间差异显著(P<0.05)。 -
[1] TSAI Y L, LIN T L, CHANG C J, et al. Probiotics, prebiotics and amelioration of diseases[J]. Journal of Biomedical Science,2019,26:3. doi: 10.1186/s12929-018-0493-6 [2] ONISZCZUK A, ONISZCZUK T, GANCARZ M, et al. Role of gut microbiota, probiotics and prebiotics in the cardiovascular diseases[J]. Molecules,2021,26(4):1172. doi: 10.3390/molecules26041172 [3] YANG H, LIU Y Q, CAI R, et al. A narrative review of relationship between gut microbiota and neuropsychiatric disorders: mechanisms and clinical application of probiotics and prebiotics[J]. Annals of Palliative Medicine,2021,10(2):2304−2313. doi: 10.21037/apm-20-1365 [4] ENAM F, MANSELL T J. Prebiotics: Tools to manipulate the gut microbiome and metabolome[J]. Journal of Industrial Microbiology & Biotechnology,2019,46(9-10):1445−1459. [5] SARDARI R, KARLSSON E N. Marine poly- and oligosaccharides as prebiotics[J]. Journal of Agricultural and Food Chemistry,2018,66(44):11544−11549. doi: 10.1021/acs.jafc.8b04418 [6] YANG Y, ZHAO C H, DIAO M X, et al. The prebiotic activity of simulated gastric and intestinal digesta of polysaccharides from the Hericium erinaceus[J]. Molecules,2018,23(12):3158. doi: 10.3390/molecules23123158 [7] HUANG F, HONG R Y, ZHANG R F, et al. Dynamic variation in biochemical properties and prebiotic activities of polysaccharides from longan pulp during fermentation process[J]. International Journal of Biological Macromolecules,2019,132(1):915−921. [8] CRUZ-RUBIO J M, MUELLER M, VIERNSTEIN H, et al. Prebiotic potential and chemical characterization of the poly and oligosaccharides present in the mucilage of Opuntia ficus-indica and Opuntia joconostle[J]. Food Chemistry,2021,362:130167. doi: 10.1016/j.foodchem.2021.130167 [9] LU X M, LI N Y, ZHAO R J, et al. In vitro prebiotic properties of garlic polysaccharides and its oligosaccharide mixtures obtained by acid hydrolysis[J]. Frontiers in Nutrition,2021,8:798450. doi: 10.3389/fnut.2021.798450 [10] HETTRICH K, DRECHSLER U, LOTH F, et al. Preparation and characterization of water-soluble xylan ethers[J]. Polymers,2017,9(4):129. [11] 姜玉莹. 玉米麸皮阿拉伯木聚糖的提取、纯化及抗炎活性研究[D]. 长春: 吉林农业大学, 2019.JIANG Y Y. Extraction, purfication and anti-inflammatory activity of corn bran arabinoxylan[D]. Changchun: Jilin Agricultural University, 2019. [12] 田贝贝, 陈洁, 王远辉. 小麦淀粉加工废水中阿拉伯木聚糖的理化性质及抗氧化活性研究[J]. 新宝登录入口(中国)有限公司,2017,38(15):40−44. [TIAN B B, CHEN J, WANG Y H. Study on physicochemical properties and antioxidant activity of arabinoxylan from wheat starch wastewater[J]. Science and Technology of Food Industry,2017,38(15):40−44. doi: 10.13386/j.issn1002-0306.2017.15.009TIAN B B, CHEN J, WANG Y H. Study on physicochemical properties and antioxidant activity of arabinoxylan from wheat starch wastewater[J]. Science and Technology of Food Industry, 2017, 38(15): 40-44. doi: 10.13386/j.issn1002-0306.2017.15.009 [13] BHANJA S K, MAITY P, ROUT D, et al. A xylan from the fresh leaves of Piper betle: Structural characterization and studies of bioactive properties[J]. Carbohydrate Polymers,2022,291:119570. doi: 10.1016/j.carbpol.2022.119570 [14] FUSO A, ROSSO F, ROSSO G, et al. Production of xylo-oligosaccharides (XOS) of tailored degree of polymerization from acetylated xylans through modelling of enzymatic hydrolysis[J]. Food Research International,2022,162:112019. doi: 10.1016/j.foodres.2022.112019 [15] LIAN Z N, WANG Y N, LUO J, et al. An integrated process to produce prebiotic xylooligosaccharides by autohydrolysis, nanofiltration and endo-xylanase from alkali-extracted xylan[J]. Bioresource Technology,2020,314:123685. doi: 10.1016/j.biortech.2020.123685 [16] CHEN G J, CHEN X H, YANG B, et al. New insight into bamboo shoot (Chimonobambusa quadrangularis) polysaccharides: Impact of extraction processes on its prebiotic activity[J]. Food Hydrocolloids,2019,95:367−377. doi: 10.1016/j.foodhyd.2019.04.046 [17] MAITY G N, MAITY P, DASGUPTA A, et al. Structural and antioxidant studies of a new arabinoxylan from green stem Andrographis paniculata (Kalmegh)[J]. Carbohydrate Polymers,2019,212(1):297−303. [18] DENG Y N, LIU Q, DANG T T, et al. Preparation, structural characterization and bioactivity of 4-O-methylglucuronoxylan from Artemisia sphaerocephala Krasch[J]. Carbohydrate Polymers,2019,222:115009. doi: 10.1016/j.carbpol.2019.115009 [19] 李和平, 何利霞. 木聚糖的化学修饰及其衍生物的应用研究进展[J]. 化工进展,2009,28(11):1955−1964, 1981. [LI H P, HE L X. Advances in chemical modification of xylan and application of their derivatives[J]. Chemical Industry and Engineering Progress,2009,28(11):1955−1964, 1981. doi: 10.16085/j.issn.1000-6613.2009.11.014LI H P, HE L X. Advances in chemical modification of xylan and application of their derivatives[J]. Chemical Industry and Engineering Progress, 2009, 28(11): 1955-1964, 1981. doi: 10.16085/j.issn.1000-6613.2009.11.014 [20] 苗露, 周玉恒, 张厚瑞, 等. 蔗渣木聚糖含量检测方法的比较[J]. 食品科学,2016,37(16):162−167. [MIAO L, ZHOU Y H, ZHANG H R, et al. Comparison of analytical methods for the quantitation of xylan in sugarcane bagasse[J]. Food Science,2016,37(16):162−167. doi: 10.7506/spkx1002-6630-201616026MIAO L, ZHOU Y H, ZHANG H R, et al. Comparison of analytical methods for the quantitation of xylan in sugarcane bagasse[J]. Food Science, 2016, 37(16): 162-167. doi: 10.7506/spkx1002-6630-201616026 [21] 刘昱均. 发酵灵芝多糖的硫酸酯化及其生物活性的研究[D]. 无锡: 江南大学, 2013.LIU Y J. Studies of fermented Ganoderma lucidum polysaccharides modified by sulfuric acid and their biological acticity[D]. Wuxi: Jiangnan University, 2013. [22] XU X D, WANG Q, XUE S Y, et al. Effect of alkali-neutralization treatment on triple-helical aggregates and independent triple helices of curdlan[J]. Carbohydrate Polymers,2021,259:117775. doi: 10.1016/j.carbpol.2021.117775 [23] 刘玉凤, 贾淑颖, 刘飞飞, 等. 不同取代度的硫酸化肠浒苔多糖抗氧化活性研究[J]. 新宝登录入口(中国)有限公司,2016,37(19):142−147, 152. [LIU Y F, JIA S Y, LIU F F, et al. Antioxidant activity of sulfated polysaccharides with different substituting degrees from Enteromorpha intestinalis[J]. Science and Technology of Food Industry,2016,37(19):142−147, 152. doi: 10.13386/j.issn1002-0306.2016.19.019LIU Y F, JIA S Y, LIU F F, et al. Antioxidant activity of sulfated polysaccharides with different substituting degrees from Enteromorpha intestinalis[J]. Science and Technology of Food Industry, 2016, 37(19): 142-147, 152. doi: 10.13386/j.issn1002-0306.2016.19.019 [24] HUANG F, LIU H J, ZHANG R F, et al. Physicochemical properties and prebiotic activities of polysaccharides from longan pulp based on different extraction techniques[J]. Carbohydrate Polymers,2019,206:344−351. doi: 10.1016/j.carbpol.2018.11.012 [25] QU Y, LI C X, ZHANG C, et al. Optimization of infrared-assisted extraction of Bletilla striata polysaccharides based on response surface methodology and their antioxidant activities[J]. Carbohydrate Polymers,2016,148:345−353. doi: 10.1016/j.carbpol.2016.04.081 [26] CHEN L, HUANG G L. Antioxidant activities of sulfated pumpkin polysaccharides[J]. International Journal of Biological Macromolecules,2019,126:743−746. doi: 10.1016/j.ijbiomac.2018.12.261 [27] PTAK S H, SANCHEZ L, FRETTE X, et al. Complementarity of Raman and infrared spectroscopy for rapid characterization of fucoidan extracts[J]. Plant Methods,2021,17:130. doi: 10.1186/s13007-021-00830-6 [28] SIMKOVIC I, TRACZ A, KELNAR I, et al. Quaternized and sulfated xylan derivative films[J]. Carbohydrate Polymers,2014,99:356−364. doi: 10.1016/j.carbpol.2013.08.075 [29] XIONG F, LI X, ZHENG L H, et al. Characterization and antioxidant activities of polysaccharides from Passiflora edulis Sims peel under different degradation methods[J]. Carbohydrate Polymers,2019,218:46−52. doi: 10.1016/j.carbpol.2019.04.069 [30] ZHONG L X, PENG X W, YANG D, et al. Long-chain anhydride modification: A new strategy for preparing xylan films[J]. Journal of Agricultural and Food Chemistry,2013,61(3):655−661. doi: 10.1021/jf304818f [31] 白长胜, 崔毅, 刘德会, 等. 运用OD值法快速进行乳酸菌活菌计数的研究[J]. 现代畜牧科技,2021,1(3):4−5, 10. [BAI C S, CUI Y, LIU D H, et al. Rapid counting of viable lactic acid bacteria using OD value assay[J]. Modern Animal Husbandry Science & Technology,2021,1(3):4−5, 10. doi: 10.19369/j.cnki.2095-9737.2021.03.002BAI C S, CUI Y, LIU D H, et al. Rapid counting of viable lactic acid bacteria using OD value assay[J]. Modern Animal Husbandry Science & Technology, 2021, 1(3): 4-5, 10. doi: 10.19369/j.cnki.2095-9737.2021.03.002 [32] 刘小华, 李舒梅, 熊跃玲. 短链脂肪酸对肠道功效及其机制的研究进展[J]. 肠外与肠内营养,2012,19(1):56−58. [LIU X H, LI S M, XIONG Y L. Research progress on effect and mechanism of short chain fatty acid for intestinal tract[J]. Parenteral & Enteral Nutrition,2012,19(1):56−58. doi: 10.16151/j.1007-810x.2012.01.001LIU X H, LI S M, XIONG Y L. Research progress on effect and mechanism of short chain fatty acid for intestinal tract[J]. Parenteral & Enteral Nutrition, 2012, 19(1): 56-58. doi: 10.16151/j.1007-810x.2012.01.001 [33] SINGH S P, JADAUN J S, NARNOLIYA L K, et al. Prebiotic oligosaccharides: Special focus on fructooligosaccharides, its biosynthesis and bioactivity[J]. Applied Biochemistry and Biotechnology,2017,183(2):613−635. doi: 10.1007/s12010-017-2605-2 [34] ABBASILIASI S, TAN J S, BELLO B, et al. Prebiotic efficacy of coconut kernel cake's soluble crude polysaccharides on growth rates and acidifying property of probiotic lactic acid bacteria in vitro[J]. Biotechnology & Biotechnological Equipment,2019,33(1):1216−1227. [35] 别蒙, 谢笔钧, 孙智达. 不同取代度水溶性羧甲基茯苓多糖的制备、结构表征及体外抑菌活性[J]. 食品科学,2020,41(12):67−76. [BIE M, XIE B J, SUN Z D. Preparation, structural characterization and in vitro antibacterial activity of water-soluble carboxymethyl pachymaran with different degrees of substitution[J]. Food Science,2020,41(12):67−76.BIE M, XIE B J, SUN Z D. Preparation, structural characterization and in vitro antibacterial activity of water-soluble carboxymethyl pachymaran with different degrees of substitution[J]. Food Science, 2020, 41(12): 67-76. [36] WANG X, HUANG M Y, YANG F, et al. Rapeseed polysaccharides as prebiotics on growth and acidifying activity of probiotics in vitro[J]. Carbohydrate Polymers,2015,125(1):232−240. [37] RAZALI M F, FAUZI N A M, SULAIMAN A, et al. Effect of high-pressure processing on prebiotic potential of stingless bee (Kelulut) honey: Tested upon Lactobacillus acidophilus and Lactobacillus brevis[J]. Journal of Food Processing and Preservation,2019,43(7):13946. [38] KOK C R, QUINTERO D F G, NIYIRORA C, et al. An in vitro enrichment strategy for formulating synergistic synbiotics[J]. Applied and Environmental Microbiology,2019,85(16):e01073−01019. [39] 王新, 王利, 王青云, 等. 益生元对益生菌生长代谢的研究[J]. 食品安全导刊,2022,1(7):76−79. [WANG X, WANG L, WANG Q Y, et al. Study on the growth and metabolism of probiotics by prebiotics[J]. China Food Satefy Magazine,2022,1(7):76−79. doi: 10.16043/j.cnki.cfs.2022.07.021WANG X, WANG L, WANG Q Y, et al. Study on the growth and metabolism of probiotics by prebiotics[J]. China Food Satefy Magazine, 2022, 1(7): 76-79. doi: 10.16043/j.cnki.cfs.2022.07.021 [40] 李霞, 陈海鸥, 韩淑芳, 等. 羧甲基化木聚糖的益生元作用研究[J]. 食品与发酵工业,2021,47(2):45−50. [LI X, CHEN H O, HAN S F, et al. The prebiotic effect of carboxymethyl xylan[J]. Food and Fermentation Industries,2021,47(2):45−50. doi: 10.13995/j.cnki.11-1802/ts.024603LI X, CHEN H O, HAN S F, et al. The prebiotic effect of carboxymethyl xylan[J]. Food and Fermentation Industries, 2021, 47(2): 45-50. doi: 10.13995/j.cnki.11-1802/ts.024603 [41] DE MATTOS N R, COLODETTE J L, DE OLIVEIRA C R. Alkaline extraction and carboxymethylation of xylans from corn fiber[J]. Cellulose,2019,26(3):2177−2189. doi: 10.1007/s10570-018-02236-5 [42] YU Y, SONG Q Q, HUANG L X, et al. Immunomodulatory activities of sulfated Cyclocarya paliurus polysaccharides with different degrees of substitution on mouse spleen lymphocytes[J]. Journal of Functional Foods,2020,64:103706. doi: 10.1016/j.jff.2019.103706 [43] 张廷辉, 汤承浩, 王晓铭, 等. 腌韭菜根中五种腐败菌菌液OD值与其活菌数相关性研究[J]. 贵州科学,2021,39(6):17−21. [ZHANG T H, TANG C H, WANG X M, et al. Correlation between OD value and number of live bacteria of five kinds of spoilage bacteria in pickled Chinese chives roots[J]. Guizhou Science,2021,39(6):17−21.ZHANG T H, TANG C H, WANG X M, et al. Correlation between OD value and number of live bacteria of five kinds of spoilage bacteria in pickled Chinese chives roots[J]. Guizhou Science, 2021, 39(6): 17-21. -