• 食品科学与工程领域高质量科技期刊分级目录第一方阵T1
  • Scopus
  • FSTA
  • 北大核心期刊
  • 中国核心学术期刊RCCSE
  • DOAJ
  • JST China
  • 中国精品科技期刊
  • 中国农业核心期刊
  • CA
  • WJCI
  • 中国科技核心期刊CSTPCD
  • 中国生物医学SinoMed
中国精品科技期刊2020 食品青年科学家峰会

贻贝多糖对胰岛素抵抗HepG2细胞糖代谢的影响

王芮 蒋起宏 周宇芳 陈慧 朱正华 刘书来 相兴伟

王芮,蒋起宏,周宇芳,等. 贻贝多糖对胰岛素抵抗HepG2细胞糖代谢的影响[J]. 新宝登录入口(中国)有限公司,2023,44(15):388−394. doi:  10.13386/j.issn1002-0306.2022080122
引用本文: 王芮,蒋起宏,周宇芳,等. 贻贝多糖对胰岛素抵抗HepG2细胞糖代谢的影响[J]. 新宝登录入口(中国)有限公司,2023,44(15):388−394. doi:  10.13386/j.issn1002-0306.2022080122
WANG Rui, JIANG Qihong, ZHOU Yufang, et al. Effects of Mussel Polysaccharides on Glucose Metabolism in Insulin-resistant HepG2 Cells[J]. Science and Technology of Food Industry, 2023, 44(15): 388−394. (in Chinese with English abstract). doi:  10.13386/j.issn1002-0306.2022080122
Citation: WANG Rui, JIANG Qihong, ZHOU Yufang, et al. Effects of Mussel Polysaccharides on Glucose Metabolism in Insulin-resistant HepG2 Cells[J]. Science and Technology of Food Industry, 2023, 44(15): 388−394. (in Chinese with English abstract). doi:  10.13386/j.issn1002-0306.2022080122

贻贝多糖对胰岛素抵抗HepG2细胞糖代谢的影响

doi: 10.13386/j.issn1002-0306.2022080122
基金项目: 国家重点研发计划课题(2020YFD0900902);浙江省教育厅一般科研项目(Y202043175)。
详细信息
    作者简介:

    王芮(1996−),女,硕士研究生,研究方向:食品营养与安全,E-mail:248836119@qq.com

    通讯作者:

    相兴伟(1986−),男,博士,教授,研究方向:食品营养与安全,E-mail:xxw11086@zjut.edu.cn

    刘书来(1977−),男,博士,教授,研究方向:水产品加工与安全,E-mail:slliu@zjut.edu.cn

  • 中图分类号: TS209

Effects of Mussel Polysaccharides on Glucose Metabolism in Insulin-resistant HepG2 Cells

  • 摘要: 为了探究贻贝多糖对胰岛素抵抗(Insulin resistance,IR)HepG2细胞糖代谢影响的潜在分子机制,以贻贝多糖(Mussel polysaccharides,MP)为研究材料,采用CCK8法检测HepG2细胞的增殖情况,同时筛选不同浓度胰岛素构建细胞胰岛素抵抗模型,检测MP对胰岛素抵抗HepG2细胞葡萄糖消耗的影响。结果显示:当胰岛素浓度处于10−6 mol/L时,HepG2细胞的葡萄糖含量最高,对葡萄糖的消耗能力最弱,是构建胰岛素抵抗模型的最佳浓度。此外,MP(100~1000 μg/mL)对HepG2细胞无毒性,能促进细胞增殖。与IR-HepG2细胞相比,200、400、600 μg/mL的MP能明显提升糖原含量,分别为17.20%、22.95%和32.50%。同时,高剂量MP能显著上调PI3K和GLUT2的相对基因表达量,并能降低GSK-3β的表达量。为后续MP降血糖提供实验基础,同时有助于促进MP的开发利用。
  • 图  1  贻贝多糖对HepG2细胞增殖的影响

    Figure  1.  Effect of mussel polysaccharide on the proliferation of HepG2 cells

    注:不同小写字母表示差异显著(P<0.05),同字母表示差异不显著(P>0.05);图2同。

    图  2  胰岛素浓度对HepG2细胞的影响

    Figure  2.  Effect of different insulin concentrations on the HepG2 cells

    图  3  贻贝多糖对IR-HepG2细胞增殖的影响

    Figure  3.  Effect of mussel polysaccharide on the proliferation of IR-HepG2 cell

    注:#表示模型组与正常组比较差异显著(P<0.05);*表示阳性和MP组与模型组比较差异显著(P<0.05);ns表示MP组与模型组比较无统计学差异;图4~图5同。

    图  4  贻贝多糖对HepG2细胞糖原含量的影响

    Figure  4.  Effect of mussel polysaccharide on the glycogen content of HepG2 cells

    图  5  贻贝多糖对HepG2细胞转录因子的影响

    Figure  5.  Effect of mussel polysaccharides on transcription factors of HepG2 cells

    表  1  引物序列

    Table  1.   Primer sequence

    基因引物序列(5′—3′)
    正向引物bp反向引物bp
    PI3KACAGGCACAACGACAACATC20TAAGCCCTAACGCAGACATC20
    AKTTTTGGGAAGGTGATCCTGGTG21GGTCGTGGGTCTGGAATGAGT21
    GSK-3βTAGTCCGATTGCGGTATTT19GGAATGGATATAGGCTAGACT21
    GLUT-2ATGAACCCAAAACCAACCCCT21GGCCTGAAATTAGCCCTTCCA21
    β-actinAGTGTGACGTTGACATCCGT20GCAGCTCAGTAACAGTCCGC20
    下载: 导出CSV
  • [1] YANG G, WEI J, LIU P, et al. Role of the gut microbiota in type 2 diabetes and related diseases[J]. Metabolism,2021,117:154712. doi:  10.1016/j.metabol.2021.154712
    [2] 林宝旺, 黄小珂, 陈芳琼, 等. 2型糖尿病发病因素和生活节奏快慢的关系[J]. 当代医学,2010,16(4):156−157, 27. [LIN Baowang, HUANG Xiaoke, CHEN Fangqiong, et al. The relation between the risk factors of type 2 diabetes and the speed of life's rhythm[J]. Contemporary Medicine,2010,16(4):156−157, 27.

    LIN Baowang, HUANG Xiaoke, CHEN Fangqiong, et al. The relation between the risk factors of type 2 diabetes and the speed of life's rhythm[J]. Contemporary Medicine, 2010, 16(4): 156-157, 27.
    [3] DING Y, XIA S, FANG H, et al. Loureirin B attenuates insulin resistance in HepG2 cells by regulating gluconeogenesis signaling pathway[J]. Eur J Pharmacol,2021,910:174481. doi:  10.1016/j.ejphar.2021.174481
    [4] 周雯, 庄蕾, 吴森. 植物多糖在Ⅱ型糖尿病降血糖作用方面的研究进展[J]. 食品与发酵工业,2021,47(8):290−296. [ZHOU Wen, ZHUANG Lei, WU Sen. Research progress of plant polysaccharides in hypoglycemic effect of type2 diabetes melli-tus[J]. Food and Fermentation Industries,2021,47(8):290−296.

    ZHOU Wen, ZHUANG Lei, WU Sen. Research progress of plant polysaccharides in hypoglycemic effect of type2 diabetes melli-tus[J]. Food and Fermentation Industries, 2021, 47(8): 290-296.
    [5] SUN Y, WANG J, GUO X, et al. Oleic acid and eicosapentaenoic acid reverse palmitic acid-induced insulin resistance in human HepG2 cells via the reactive oxygen species/JUN pathway[J]. Genomics Proteomics Bioinformatics,2021,19(5):754−771. doi:  10.1016/j.gpb.2019.06.005
    [6] SUN H, SAEEDI P, KARURANGA S, et al. IDF diabetes Atlas: Global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045[J]. Diabetes Res Clin Pract,2021:109119.
    [7] TAHRANI A A, BARNETT A H, BAILEY C J. Pharmacology and therapeutic implications of current drugs for type 2 diabetes mellitus[J]. Nature Reviews Endocrinology,2016,12(10):566−592. doi:  10.1038/nrendo.2016.86
    [8] KE C, MORGAN S, SMOLINA K, et al. Mortality and cardiovascular risk of sulfonylureas in South Asian, Chinese and other Canadians with diabetes[J]. Canadian Journal of Diabetes,2017,41(2):150−5. doi:  10.1016/j.jcjd.2016.08.218
    [9] MA L X, HUANG X H, ZHENG J, et al. Free amino acid, 5′-Nucleotide, and lipid distribution in different tissues of blue mussel (Mytilis edulis L.) determined by mass spectrometry based metabolomics[J]. Food Chem,2022,373:131435. doi:  10.1016/j.foodchem.2021.131435
    [10] WU J, SHAO H, ZHANG J, et al. Mussel polysaccharide α-D-glucan (MP-A) protects against non-alcoholic fatty liver disease via maintaining the homeostasis of gut microbiota and regulating related gut-liver axis signaling pathways[J]. Int J Biol Macromol,2019,130:68−78. doi:  10.1016/j.ijbiomac.2019.02.097
    [11] XIANG X W, WANG R, CHEN H, et al. Structural characterization of a novel marine polysaccharide from mussel and its antioxidant activity in RAW264.7 cells induced by H2O2[J]. Food Bioscience,2022,47:101659. doi:  10.1016/j.fbio.2022.101659
    [12] XIANG X W, WANG R, YAO L W, et al. Anti-inflammatory effects of Mytilus coruscus polysaccharide on RAW264.7 cells and DSS-induced colitis in mice[J]. Mar Drugs,2021,19:468. doi:  10.3390/md19080468
    [13] ZHU Q, LIN L, ZHAO M. Sulfated fucan/fucosylated chondroitin sulfate-dominated polysaccharide fraction from low-edible-value sea cucumber ameliorates type 2 diabetes in rats: New prospects for sea cucumber polysaccharide based-hypoglycemic functional food[J]. Int J Biol Macromol,2020,159:34−45. doi:  10.1016/j.ijbiomac.2020.05.043
    [14] LIU Y, XU Z, HUANG H, et al. Fucoidan ameliorates glucose metabolism by the improvement of intestinal barrier and inflammatory damage in type 2 diabetic rats[J]. Int J Biol Macromol,2022,201:616−629. doi:  10.1016/j.ijbiomac.2022.01.102
    [15] JIA R B, WU J, LI Z R, et al. Comparison of physicochemical properties and antidiabetic effects of polysaccharides extracted from three seaweed species[J]. Int J Biol Macromol,2020,149:81−92. doi:  10.1016/j.ijbiomac.2020.01.111
    [16] MOKASHI P, KHANNA A, PANDITA N. Flavonoids from Enicostema littorale Blume enhances glucose uptake of cells in insulin resistant human liver cancer (HepG2) cell line via IRS-1/PI3K/Akt pathway[J]. Biomed Pharmacother,2017,90:268−277. doi:  10.1016/j.biopha.2017.03.047
    [17] 王瑞雪, 张筠, 崔艳伟, 等. 柠檬皮多酚成分分析及其对胰岛素抵抗HepG2细胞糖代谢的影响[J]. 新宝登录入口(中国)有限公司,2022,43(23):310−317. [WANG Ruixue, ZHANG Jun, CUI Yanwei, et al. Analysis of polyphenols from lemon peel and its effect on glucose metabolism in insulin-resistant HepG2 cells[J]. Science and Technology of Food Industry,2022,43(23):310−317.

    WANG Ruixue, ZHANG Jun, CUI Yanwei, et al. Analysis of polyphenols from lemon peel and its effect on glucose metabolism in insulin-resistant HepG2 cells[J]. Science and Technology of Food Industry, 2022, 43(23): 310−317.
    [18] 张彩平, 袁育林, 李博洁, 等. 驱动蛋白16B在姜黄素影响HepG2细胞脂质摄取中的作用[J]. 中国动脉硬化杂志,2021,29(11):949−954. [ZHANG Caiping, YUAN Yulin, LI Bojie, et al. Role of kinesin family member 16B in the effect of curcumin on lipid uptake of HepG2 cells[J]. Chinese Journal of Arteriosclerosis,2021,29(11):949−954.

    ZHANG Caiping, YUAN Yulin, LI Bojie, et al. Role of kinesin family member 16B in the effect of curcumin on lipid uptake of HepG2 cells[J]. Chinese Journal of Arteriosclerosis, 2021, 29(11): 949-954.
    [19] 符群, 郐滨, 钟明旭, 等. 超声波辅助酶解法提取北虫草菌素及其降血糖活性研究[J]. 食品与发酵工业,2021,47(9):120−127. [FU Q, KUAI B, ZHONG M X, et al. Extraction of cordycepin with ultrasound-assisted enzymatic hydrolysis and its hypoglycemic activity[J]. Food and Fermentation Industries,2021,47(9):120−127.

    FU Q, KUAI B, ZHONG M X, et al. Extraction of cordycepin with ultrasound-assisted enzymatic hydrolysis and its hypoglycemic activity[J]. Food and Fermentation Industries, 2021, 47(9): 120-127.
    [20] REN B, CHEN C, LI C, et al. Optimization of microwave-assisted extraction of Sargassum thunbergii polysaccharides and its antioxidant and hypoglycemic activities[J]. Carbohydr Polym,2017,173:192−201. doi:  10.1016/j.carbpol.2017.05.094
    [21] WANG J, WU T, FANG L, et al. Anti-diabetic effect by walnut (Juglans mandshurica Maxim. )-derived peptide LPLLR through inhibiting α-glucosidase and α-amylase, and alleviating insulin resistance of hepatic HepG2 cells[J]. J Funct Foods,2020,69:103944. doi:  10.1016/j.jff.2020.103944
    [22] DING Q, ZHANG B, ZHENG W, et al. Liupao tea extract alleviates diabetes mellitus and modulates gut microbiota in rats induced by streptozotocin and high-fat, high-sugar diet[J]. Biomed Pharmacother,2019,118:109262. doi:  10.1016/j.biopha.2019.109262
    [23] WU G, BAI Z, WAN Y, et al. Antidiabetic effects of polysaccharide from azuki bean (Vigna angularis) in type 2 diabetic rats via insulin/PI3K/AKT signaling pathway[J]. Food Hydrocolloids,2020,101:105456. doi:  10.1016/j.foodhyd.2019.105456
    [24] 马二兰, 张帆, 吕春秋, 等. 荔浦芋球蛋白结构表征及其对HepG2细胞糖代谢的影响[J]. 新宝登录入口(中国)有限公司,2022,43(15):359−365. [MA Erlan, ZHANG Fan, LÜ Chunqiu, et al. Structural characterization of Lipu taro globulin and its glucose metabolism activity on HepG2 cells[J]. Science and Technology of Food Industry,2022,43(15):359−365.

    MA Erlan, ZHANG Fan, LÜ Chunqiu, et al. Structural characterization of Lipu taro globulin and its glucose metabolism activity on HepG2 cells[J]. Science and Technology of Food Industry, 2022, 43(15): 359−365.
    [25] 赵可心, 夏凯, 苑鹏, 等. 松花粉提取物对胰岛素抵抗HepG2细胞糖脂代谢的影响[J]. 食品与发酵工业,2019,45(6):83−90. [ZHAO Kexin, XIA Kai, YUAN Peng, et al. Effects of pine pollen extracts on insulin resisted glycolipid metabolism in HepG2 cells[J]. Food and Fermentation Industries,2019,45(6):83−90.

    ZHAO Kexin, XIA Kai, YUAN Peng, et al. Effects of pine pollen extracts on insulin resisted glycolipid metabolism in HepG2 cells[J]. Food and Fermentation Industries, 2019, 45(6): 83-90.
    [26] 陈梦霞, 汪妮, 孟凡强, 等. 生姜姜辣素的分离及对HepG2细胞胰岛素抵抗的预防作用[J]. 新宝登录入口(中国)有限公司,2022,43(22):387−395. [CHEN Mengxia, WANG Ni, MENG Fanqiang, et al. Isolation of gingerols and its preventive effect on insulin resistance of HepG2 cells[J]. Science and Technology of Food Industry,2022,43(22):387−395.

    CHEN Mengxia, WANG Ni, MENG Fanqiang, et al. Isolation of gingerols and its preventive effect on insulin resistance of HepG2 cells[J]. Science and Technology of Food Industry, 2022, 43(22): 387−395.
    [27] ZHU J, WU M, ZHOU H, et al. Liubao brick tea activates the PI3K-Akt signaling pathway to lower blood glucose, metabolic disorders and insulin resistance via altering the intestinal flora[J]. Food Res Int,2021,148:110594. doi:  10.1016/j.foodres.2021.110594
    [28] ZHANG Y, HUANG N Q, YAN F, et al. Diabetes mellitus and Alzheimer’s disease: GSK-3β as a potential link[J]. Behav Brain Res,2018,339:57−65. doi:  10.1016/j.bbr.2017.11.015
    [29] THORENS B. GLUT2, glucose sensing and glucose homeostasis[J]. Diabetologia,2015,58(2):221−232. doi:  10.1007/s00125-014-3451-1
    [30] CHEN B, ABAYDULA Y, LI D, et al. Taurine ameliorates oxidative stress by regulating PI3K/Akt/GLUT4 pathway in HepG2 cells and diabetic rats[J]. J Funct Foods,2021,85:104629. doi:  10.1016/j.jff.2021.104629
    [31] YANG B, YUAN L, ZHANG W, et al. Sturgeon protein-derived peptide KIWHHTF prevents insulin resistance via modulation of IRS-1/PI3K/AKT signaling pathways in HepG2 cells[J]. J Funct Foods,2022,94:105126. doi:  10.1016/j.jff.2022.105126
  • 加载中
图(5) / 表(1)
计量
  • 文章访问数:  14
  • HTML全文浏览量:  5
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-11-30
  • 网络出版日期:  2023-06-19

目录

    /

    返回文章
    返回