Effects of Mussel Polysaccharides on Glucose Metabolism in Insulin-resistant HepG2 Cells
-
摘要: 为了探究贻贝多糖对胰岛素抵抗(Insulin resistance,IR)HepG2细胞糖代谢影响的潜在分子机制,以贻贝多糖(Mussel polysaccharides,MP)为研究材料,采用CCK8法检测HepG2细胞的增殖情况,同时筛选不同浓度胰岛素构建细胞胰岛素抵抗模型,检测MP对胰岛素抵抗HepG2细胞葡萄糖消耗的影响。结果显示:当胰岛素浓度处于10−6 mol/L时,HepG2细胞的葡萄糖含量最高,对葡萄糖的消耗能力最弱,是构建胰岛素抵抗模型的最佳浓度。此外,MP(100~1000 μg/mL)对HepG2细胞无毒性,能促进细胞增殖。与IR-HepG2细胞相比,200、400、600 μg/mL的MP能明显提升糖原含量,分别为17.20%、22.95%和32.50%。同时,高剂量MP能显著上调PI3K和GLUT2的相对基因表达量,并能降低GSK-3β的表达量。为后续MP降血糖提供实验基础,同时有助于促进MP的开发利用。Abstract: This study aimed to evaluate the effects of mussel polysaccharides on glucose metabolism in insulin resistance HepG2 cells. Using the mussel polysaccharide (MP) as the research material, the CCK8 method was used to detect the proliferation of HepG2 cells, and different concentrations of insulin were screened to construct a cellular insulin resistance model to detect the effect of mussel polysaccharide on glucose consumption of insulin-resistant HepG2 cells. The results showed that when the insulin concentration was 10−6 mol/L, the glucose content of HepG2 cells was the highest and the ability to consume glucose was the weakest, and it was the best concentration for constructing the insulin resistance model. MP (100-1000 μg/mL) were non-toxic to HepG2 cells, could promote cell proliferation. Compared with IR-HepG2 cells, 200, 400 and 600 μg/mL of MP significantly elevated glycogen content by 17.20%, 22.95% and 32.50%, respectively. Meanwhile, high-dose MP significantly up-regulated the relative gene expression of PI3K and GLUT2, decreased the expression of GSK-3β. It provides an experimental basis for the subsequent hypoglycemia of MP, and also helps to promote the exploitation and potential application of MP.
-
Key words:
- mussels /
- polysaccharides /
- insulin resistance /
- HepG2 cells /
- glucose metabolism
-
图 1 贻贝多糖对HepG2细胞增殖的影响
Figure 1. Effect of mussel polysaccharide on the proliferation of HepG2 cells
注:不同小写字母表示差异显著(P<0.05),同字母表示差异不显著(P>0.05);图2同。
表 1 引物序列
Table 1. Primer sequence
基因 引物序列(5′—3′) 正向引物 bp 反向引物 bp PI3K ACAGGCACAACGACAACATC 20 TAAGCCCTAACGCAGACATC 20 AKT TTTGGGAAGGTGATCCTGGTG 21 GGTCGTGGGTCTGGAATGAGT 21 GSK-3β TAGTCCGATTGCGGTATTT 19 GGAATGGATATAGGCTAGACT 21 GLUT-2 ATGAACCCAAAACCAACCCCT 21 GGCCTGAAATTAGCCCTTCCA 21 β-actin AGTGTGACGTTGACATCCGT 20 GCAGCTCAGTAACAGTCCGC 20 -
[1] YANG G, WEI J, LIU P, et al. Role of the gut microbiota in type 2 diabetes and related diseases[J]. Metabolism,2021,117:154712. doi: 10.1016/j.metabol.2021.154712 [2] 林宝旺, 黄小珂, 陈芳琼, 等. 2型糖尿病发病因素和生活节奏快慢的关系[J]. 当代医学,2010,16(4):156−157, 27. [LIN Baowang, HUANG Xiaoke, CHEN Fangqiong, et al. The relation between the risk factors of type 2 diabetes and the speed of life's rhythm[J]. Contemporary Medicine,2010,16(4):156−157, 27.LIN Baowang, HUANG Xiaoke, CHEN Fangqiong, et al. The relation between the risk factors of type 2 diabetes and the speed of life's rhythm[J]. Contemporary Medicine, 2010, 16(4): 156-157, 27. [3] DING Y, XIA S, FANG H, et al. Loureirin B attenuates insulin resistance in HepG2 cells by regulating gluconeogenesis signaling pathway[J]. Eur J Pharmacol,2021,910:174481. doi: 10.1016/j.ejphar.2021.174481 [4] 周雯, 庄蕾, 吴森. 植物多糖在Ⅱ型糖尿病降血糖作用方面的研究进展[J]. 食品与发酵工业,2021,47(8):290−296. [ZHOU Wen, ZHUANG Lei, WU Sen. Research progress of plant polysaccharides in hypoglycemic effect of type2 diabetes melli-tus[J]. Food and Fermentation Industries,2021,47(8):290−296.ZHOU Wen, ZHUANG Lei, WU Sen. Research progress of plant polysaccharides in hypoglycemic effect of type2 diabetes melli-tus[J]. Food and Fermentation Industries, 2021, 47(8): 290-296. [5] SUN Y, WANG J, GUO X, et al. Oleic acid and eicosapentaenoic acid reverse palmitic acid-induced insulin resistance in human HepG2 cells via the reactive oxygen species/JUN pathway[J]. Genomics Proteomics Bioinformatics,2021,19(5):754−771. doi: 10.1016/j.gpb.2019.06.005 [6] SUN H, SAEEDI P, KARURANGA S, et al. IDF diabetes Atlas: Global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045[J]. Diabetes Res Clin Pract,2021:109119. [7] TAHRANI A A, BARNETT A H, BAILEY C J. Pharmacology and therapeutic implications of current drugs for type 2 diabetes mellitus[J]. Nature Reviews Endocrinology,2016,12(10):566−592. doi: 10.1038/nrendo.2016.86 [8] KE C, MORGAN S, SMOLINA K, et al. Mortality and cardiovascular risk of sulfonylureas in South Asian, Chinese and other Canadians with diabetes[J]. Canadian Journal of Diabetes,2017,41(2):150−5. doi: 10.1016/j.jcjd.2016.08.218 [9] MA L X, HUANG X H, ZHENG J, et al. Free amino acid, 5′-Nucleotide, and lipid distribution in different tissues of blue mussel (Mytilis edulis L.) determined by mass spectrometry based metabolomics[J]. Food Chem,2022,373:131435. doi: 10.1016/j.foodchem.2021.131435 [10] WU J, SHAO H, ZHANG J, et al. Mussel polysaccharide α-D-glucan (MP-A) protects against non-alcoholic fatty liver disease via maintaining the homeostasis of gut microbiota and regulating related gut-liver axis signaling pathways[J]. Int J Biol Macromol,2019,130:68−78. doi: 10.1016/j.ijbiomac.2019.02.097 [11] XIANG X W, WANG R, CHEN H, et al. Structural characterization of a novel marine polysaccharide from mussel and its antioxidant activity in RAW264.7 cells induced by H2O2[J]. Food Bioscience,2022,47:101659. doi: 10.1016/j.fbio.2022.101659 [12] XIANG X W, WANG R, YAO L W, et al. Anti-inflammatory effects of Mytilus coruscus polysaccharide on RAW264.7 cells and DSS-induced colitis in mice[J]. Mar Drugs,2021,19:468. doi: 10.3390/md19080468 [13] ZHU Q, LIN L, ZHAO M. Sulfated fucan/fucosylated chondroitin sulfate-dominated polysaccharide fraction from low-edible-value sea cucumber ameliorates type 2 diabetes in rats: New prospects for sea cucumber polysaccharide based-hypoglycemic functional food[J]. Int J Biol Macromol,2020,159:34−45. doi: 10.1016/j.ijbiomac.2020.05.043 [14] LIU Y, XU Z, HUANG H, et al. Fucoidan ameliorates glucose metabolism by the improvement of intestinal barrier and inflammatory damage in type 2 diabetic rats[J]. Int J Biol Macromol,2022,201:616−629. doi: 10.1016/j.ijbiomac.2022.01.102 [15] JIA R B, WU J, LI Z R, et al. Comparison of physicochemical properties and antidiabetic effects of polysaccharides extracted from three seaweed species[J]. Int J Biol Macromol,2020,149:81−92. doi: 10.1016/j.ijbiomac.2020.01.111 [16] MOKASHI P, KHANNA A, PANDITA N. Flavonoids from Enicostema littorale Blume enhances glucose uptake of cells in insulin resistant human liver cancer (HepG2) cell line via IRS-1/PI3K/Akt pathway[J]. Biomed Pharmacother,2017,90:268−277. doi: 10.1016/j.biopha.2017.03.047 [17] 王瑞雪, 张筠, 崔艳伟, 等. 柠檬皮多酚成分分析及其对胰岛素抵抗HepG2细胞糖代谢的影响[J]. 新宝登录入口(中国)有限公司,2022,43(23):310−317. [WANG Ruixue, ZHANG Jun, CUI Yanwei, et al. Analysis of polyphenols from lemon peel and its effect on glucose metabolism in insulin-resistant HepG2 cells[J]. Science and Technology of Food Industry,2022,43(23):310−317.WANG Ruixue, ZHANG Jun, CUI Yanwei, et al. Analysis of polyphenols from lemon peel and its effect on glucose metabolism in insulin-resistant HepG2 cells[J]. Science and Technology of Food Industry, 2022, 43(23): 310−317. [18] 张彩平, 袁育林, 李博洁, 等. 驱动蛋白16B在姜黄素影响HepG2细胞脂质摄取中的作用[J]. 中国动脉硬化杂志,2021,29(11):949−954. [ZHANG Caiping, YUAN Yulin, LI Bojie, et al. Role of kinesin family member 16B in the effect of curcumin on lipid uptake of HepG2 cells[J]. Chinese Journal of Arteriosclerosis,2021,29(11):949−954.ZHANG Caiping, YUAN Yulin, LI Bojie, et al. Role of kinesin family member 16B in the effect of curcumin on lipid uptake of HepG2 cells[J]. Chinese Journal of Arteriosclerosis, 2021, 29(11): 949-954. [19] 符群, 郐滨, 钟明旭, 等. 超声波辅助酶解法提取北虫草菌素及其降血糖活性研究[J]. 食品与发酵工业,2021,47(9):120−127. [FU Q, KUAI B, ZHONG M X, et al. Extraction of cordycepin with ultrasound-assisted enzymatic hydrolysis and its hypoglycemic activity[J]. Food and Fermentation Industries,2021,47(9):120−127.FU Q, KUAI B, ZHONG M X, et al. Extraction of cordycepin with ultrasound-assisted enzymatic hydrolysis and its hypoglycemic activity[J]. Food and Fermentation Industries, 2021, 47(9): 120-127. [20] REN B, CHEN C, LI C, et al. Optimization of microwave-assisted extraction of Sargassum thunbergii polysaccharides and its antioxidant and hypoglycemic activities[J]. Carbohydr Polym,2017,173:192−201. doi: 10.1016/j.carbpol.2017.05.094 [21] WANG J, WU T, FANG L, et al. Anti-diabetic effect by walnut (Juglans mandshurica Maxim. )-derived peptide LPLLR through inhibiting α-glucosidase and α-amylase, and alleviating insulin resistance of hepatic HepG2 cells[J]. J Funct Foods,2020,69:103944. doi: 10.1016/j.jff.2020.103944 [22] DING Q, ZHANG B, ZHENG W, et al. Liupao tea extract alleviates diabetes mellitus and modulates gut microbiota in rats induced by streptozotocin and high-fat, high-sugar diet[J]. Biomed Pharmacother,2019,118:109262. doi: 10.1016/j.biopha.2019.109262 [23] WU G, BAI Z, WAN Y, et al. Antidiabetic effects of polysaccharide from azuki bean (Vigna angularis) in type 2 diabetic rats via insulin/PI3K/AKT signaling pathway[J]. Food Hydrocolloids,2020,101:105456. doi: 10.1016/j.foodhyd.2019.105456 [24] 马二兰, 张帆, 吕春秋, 等. 荔浦芋球蛋白结构表征及其对HepG2细胞糖代谢的影响[J]. 新宝登录入口(中国)有限公司,2022,43(15):359−365. [MA Erlan, ZHANG Fan, LÜ Chunqiu, et al. Structural characterization of Lipu taro globulin and its glucose metabolism activity on HepG2 cells[J]. Science and Technology of Food Industry,2022,43(15):359−365.MA Erlan, ZHANG Fan, LÜ Chunqiu, et al. Structural characterization of Lipu taro globulin and its glucose metabolism activity on HepG2 cells[J]. Science and Technology of Food Industry, 2022, 43(15): 359−365. [25] 赵可心, 夏凯, 苑鹏, 等. 松花粉提取物对胰岛素抵抗HepG2细胞糖脂代谢的影响[J]. 食品与发酵工业,2019,45(6):83−90. [ZHAO Kexin, XIA Kai, YUAN Peng, et al. Effects of pine pollen extracts on insulin resisted glycolipid metabolism in HepG2 cells[J]. Food and Fermentation Industries,2019,45(6):83−90.ZHAO Kexin, XIA Kai, YUAN Peng, et al. Effects of pine pollen extracts on insulin resisted glycolipid metabolism in HepG2 cells[J]. Food and Fermentation Industries, 2019, 45(6): 83-90. [26] 陈梦霞, 汪妮, 孟凡强, 等. 生姜姜辣素的分离及对HepG2细胞胰岛素抵抗的预防作用[J]. 新宝登录入口(中国)有限公司,2022,43(22):387−395. [CHEN Mengxia, WANG Ni, MENG Fanqiang, et al. Isolation of gingerols and its preventive effect on insulin resistance of HepG2 cells[J]. Science and Technology of Food Industry,2022,43(22):387−395.CHEN Mengxia, WANG Ni, MENG Fanqiang, et al. Isolation of gingerols and its preventive effect on insulin resistance of HepG2 cells[J]. Science and Technology of Food Industry, 2022, 43(22): 387−395. [27] ZHU J, WU M, ZHOU H, et al. Liubao brick tea activates the PI3K-Akt signaling pathway to lower blood glucose, metabolic disorders and insulin resistance via altering the intestinal flora[J]. Food Res Int,2021,148:110594. doi: 10.1016/j.foodres.2021.110594 [28] ZHANG Y, HUANG N Q, YAN F, et al. Diabetes mellitus and Alzheimer’s disease: GSK-3β as a potential link[J]. Behav Brain Res,2018,339:57−65. doi: 10.1016/j.bbr.2017.11.015 [29] THORENS B. GLUT2, glucose sensing and glucose homeostasis[J]. Diabetologia,2015,58(2):221−232. doi: 10.1007/s00125-014-3451-1 [30] CHEN B, ABAYDULA Y, LI D, et al. Taurine ameliorates oxidative stress by regulating PI3K/Akt/GLUT4 pathway in HepG2 cells and diabetic rats[J]. J Funct Foods,2021,85:104629. doi: 10.1016/j.jff.2021.104629 [31] YANG B, YUAN L, ZHANG W, et al. Sturgeon protein-derived peptide KIWHHTF prevents insulin resistance via modulation of IRS-1/PI3K/AKT signaling pathways in HepG2 cells[J]. J Funct Foods,2022,94:105126. doi: 10.1016/j.jff.2022.105126 -