Analysis of Quality Change of Capsicum annuum in Growing Process from Different Producing Areas
-
摘要: 为调控剁辣椒产品品质并扩大其原料来源,本文以剁辣椒加工常用品种“辣丰33号”为研究对象,通过对山东和山西两产地辣椒5个不同生长阶段进行研究,探究其果实生长过程品质变化规律。结果表明,两产地辣椒生长过程中品质特性变化趋势基本一致,VC和总辣椒素含量随果实生长出现不同程度的上升;可溶性固形物、酸度、总多酚、DPPH·清除能力、FRAP、ABTS+·清除能力随果实生长呈先下降后上升趋势;有机酸、总灰分、Mg、Ca、Mn、Fe则随果实生长出现不同程度的下降。此外,山东产地辣椒的VC、可溶性固形物、有机酸、总辣椒素等含量总体高于山西产地(P<0.05),而山西产地辣椒仅在果长、果宽和单果重具有一定优势。聚类分析表明不同产地相同生长阶段辣椒品质接近,且绿熟期(S3)是辣椒生长过程中品质变化的转折点。综上所述,山东和山西两产地辣椒发育期品质变化基本一致,红熟期(S4)相比于其它时期更利于剁辣椒的加工。Abstract: As the common varieties of chopper pepper process, “La Feng 33” was selected as the research object. Five different growth stages of pepper from Shandong and Shanxi provinces were analyzed to explore the quality changes of pepper fruit during the growth process, which was essential for regulating the quality of chopped pepper and expanding the raw material sources. The results showed that the change trend of quality characteristics of pepper in the two regions was basically the same during the growth process. The content of VC and total capsaicin increased with fruit growth to some extent; soluble solids, acidity, total polyphenols, DPPH· scavenging capacity, FRAP, ABTS+· scavenging capacity decreased first and then increased with fruit growth; organic acids, total ash, Mg, Ca, Mn and Fe decreased with fruit growth. In addition, the contents of VC, soluble solids, organic acids and total capsaicin in Shandong producing area were higher than those in Shanxi producing area (P<0.05), but the peppers from Shanxi Province only had advantages in fruit length, fruit width and single fruit weight. Cluster analysis showed that the quality of pepper at the same growth stage was similar in different producing areas, and the green ripening stage (S3) was the turning point of quality change in the growth process of pepper. Overall, the quality change was similar between Shandong and Shanxi producing area, and the red ripe stage (S4) was beneficial for pepper chopping processing.
-
Key words:
- peppers /
- growth process /
- producing area /
- quality /
- clustering analysis
-
表 1 不同产地辣椒生长过程中表型性状统计
Table 1. The statistics of phenotypic traits during growth of peppers from different origins
产地 生长阶段 果长(cm) 果宽(mm) 单果重(g) 含籽率(%)
山东S1 10.34±1.36a 7.32±0.87a 2.91±0.70a 5.37±0.77bc S2 13.73±0.62b 9.99±1.09b 6.86±1.10b 3.27±0.94a S3 17.30±0.91cd 11.62±0.68c 11.70±1.25c 4.09±0.29ab S4 17.37±0.69cd 10.74±0.63bc 11.54±0.71c 5.58±0.30bc S5 17.11±1.53cd 11.84±0.67cd 11.14±1.11c 4.79±0.14bc
山西S1 9.85±1.01a 7.28±0.63a 2.93±0.35a 5.97±1.49c S2 15.86±0.63c 9.92±0.67b 8.21±0.82b 5.83±0.64c S3 19.08±1.08d 13.25±0.98de 14.34±1.33d 4.96±0.68bc S4 19.14±1.49d 12.04±1.13cde 12.67±1.87cd 5.67±1.31c S5 19.31±1.64d 13.38±0.99e 14.03±1.50d 5.95±0.31c 注:表中同列上标不同字母表示差异显著(P<0.05),表2~表6同。 表 2 不同产地辣椒生长过程中基本成分变化
Table 2. Changes in basic components during growth of peppers from different origins
产地 生长阶段 水分含量(%) 灰分含量(%) 可溶性固形
物含量(%)酸度(%)
山东S1 89.11±0.63cd 6.98±0.65d 5.90±0.08d 0.50±0.02dc S2 91.25±0.46e 6.69±0.26cd 5.07±0.05b 0.33±0.01a S3 88.62±0.12c 6.17±0.57bcd 5.43±0.25c 0.35±0.04ab S4 83.14±0.76a 5.28±0.47ab 9.33±0.12g 0.42±0.05bc S5 82.47±0.06a 5.14±0.45a 10.23±0.05h 0.63±0.02e
山西S1 89.49±0.20d 6.43±0.74cd 6.77±0.05e 0.81±0.01f S2 90.53±0.13e 5.94±0.60abc 4.67±0.09a 0.45±0.04dc S3 88.44±0.36c 6.61±0.26cd 5.87±0.05d 0.51±0.01d S4 84.45±0.31b 6.06±0.09bcd 7.30±0.08f 0.52±0.02d S5 82.62±0.40a 6.51±0.48cd 7.50±0.08f 0.61±0.08e 表 3 不同产地辣椒生长过程中抗氧化物质含量变化
Table 3. Changes in the content of antioxidant substances during growth of peppers from different origins
产地 生长阶段 VC含量
(mg/100 g)总多酚含量
(mg GA eq/g FW)类黄酮含量
(mg/g)
山东S1 5.96±0.08b 1.60±0.01f 0.97±0.03e S2 6.04±0.07b 1.10±0.00c 0.60±0.00c S3 10.66±1.04c 1.09±0.01c 0.30±0.04ab S4 128.25±1.80g 1.66±0.02g 0.40±0.04b S5 151.26±0.14h 1.75±0.01h 0.29±0.00ab
山西S1 3.53±0.14a 2.03±0.03i 1.32±0.04f S2 5.57±0.51b 1.05±0.04b 0.81±0.07d S3 15.04±0.22d 0.84±0.03a 0.34±0.01ab S4 53.54±0.29e 1.58±0.02d 0.23±0.01a S5 60.91±0.23f 1.60±0.01e 0.26±0.01ab 表 4 不同产地辣椒生长过程中辣椒素类物质变化
Table 4. Changes in capsaicinoids during growth of peppers from different origins
产地 生长
阶段二氢辣椒
素含量
(mg/g DW)辣椒素
含量
(mg/g DW)辣椒素类
总物质含量
(mg/g DW)斯科维尔指数
(SHU)辣度 山东 S1 0.11±0.00b 0.12±0.06b 0.26±0.00b 4039.43±25.79b 26.93 S2 0.19±0.00e 0.24±0.04e 0.47±0.00e 7218.58±29.11e 48.12 S3 0.31±0.00h 0.42±0.07h 0.82±0.00h 12639.86±9.53h 84.27 S4 0.33±0.00i 0.45±0.01j 0.87±0.00i 13408.20±41.74i 89.39 S5 0.34±0.00j 0.44±0.02i 0.87±0.00j 13462.41±55.88j 89.75
山西S1 0.08±0.00a 0.07±0.01a 0.17±0.00a 2626.03±49.55a 17.51 S2 0.23±0.00g 0.24±0.01f 0.52±0.00g 8069.30±2.59g 53.80 S3 0.14±0.00c 0.18±0.01c 0.35±0.00c 5389.70±11.68c 35.93 S4 0.19±0.00f 0.25±0.07g 0.50±0.00f 7679.83±27.04f 51.20 S5 0.16±0.00d 0.21±0.08d 0.41±0.01d 6350.62±174.78d 42.34 表 5 不同产地辣椒生长过程中有机酸含量变化
Table 5. Changes in the content of organic acid during growth of peppers from different origins
产地 生长阶段 草酸
(g/kg DW)苹果酸
(g/kg DW)柠檬酸
(g/kg DW)总量
(g/kg DW)
山东S1 19.58±0.40i 10.97±0.44f 16.93±0.27f 47.47 S2 14.24±0.07h 6.99±0.14d 10.01±0.03a 31.24 S3 5.37±0.03e 7.80±0.32de 18.38±0.05g 31.55 S4 1.53±0.03b 1.97±0.75b 11.82±0.95b 15.32 S5 2.47±0.34c 0.51±0.11a 11.40±0.55b 14.38
山西S1 13.67±0.07g 8.61±0.87e 16.28±0.19df 38.55 S2 12.41±0.29f 7.08±0.10d 14.50±0.04c 33.98 S3 4.30±0.10d 4.50±0.04c 14.80±0.10c 23.61 S4 1.22±0.02ab 1.43±0.00b 15.68±0.04de 18.34 S5 1.04±0.04a 1.54±0.29b 15.06±0.02cd 17.64 表 6 不同产地辣椒生长过程矿物质元素含量变化(mg/100 g DW)
Table 6. Changes of mineral elements content during growth of peppers from different origins (mg/100 g DW)
产地 生长阶段 Na Mg Ca Mn Fe Cu Zn 总量 S1 161.96±6.26ab 208.42±7.55bc 167.89±5.18d 1.34±0.09d 11.34±1.12b 2.00±0.61a 3.91±0.40a 556.87 S2 194.17±53.63b 191.44±1.29bc 158.27±2.40d 1.04±0.03ab 6.25±0.15a 1.93±0.45a 3.29±0.09a 556.40 山东 S3 136.18±5.86ab 186.09±2.71bc 171.12±2.22d 1.12±0.00abc 6.97±1.07a 1.98±0.23a 3.27±1.61a 506.73 S4 95.72±12.05a 145.14±9.52a 73.63±4.75a 1.04±0.05a 5.00±0.06a 1.34±0.15a 1.99±0.24a 323.85 S5 132.11±22.24ab 159.89±1.5a 95.07±3.74b 1.05±0.09ab 5.07±0.77a 1.83±0.29a 2.81±0.36a 397.84 S1 109.51±7.62ab 235.23±8.46d 144.42±5.36c 1.66±0.04e 7.70±0.29ab 2.19±0.00a 3.59±0.30a 504.30 S2 127.36±8.92ab 197.08±10.96bc 137.13±6.94c 1.17±0.07abcd 6.23±0.31a 2.08±0.18a 3.51±0.18a 474.55 山西 S3 132.14±1.50ab 184.86±1.46bc 104.68±0.10b 1.07±0.01abc 5.48±0.07a 2.00±0.02a 4.09±0.04a 434.32 S4 116.74±7.86ab 183.69±11.33bc 79.08±4.05a 1.24±0.07bcd 8.83±3.22ab 1.53±0.23a 2.20±0.52a 393.31 S5 140.47±34.20ab 205.00±0.47bc 103.35±4.76b 1.26±0.03cd 6.25±0.82a 1.94±0.35a 3.38±1.62a 461.66 -
[1] LIU F, YU H, DENG Y, et al. Pepper hub, a pepper informatics hub for the chili pepper research community[J]. Molecular Plant,2017,10(8):1129−1132. doi: 10.1016/j.molp.2017.03.005 [2] FAO. 2020. [EB/OL]. http://www.fao.org/faostat/en/#data/QC. [3] HOWARD L R, TALCOTT S T, BRENES C H, et al. Changes in phytochemical and antioxidant activity of selected pepper cultivars (Capsicum species) as influenced by maturity[J]. Journal of Agricultural & Food Chemistry,2000,48(5):1713−1720. [4] YONG-HWAN S, JIN K, KYUNGPYO P. The effect of capsaicin on salivary gland dysfunction[J]. Molecules,2016,21(7):835. doi: 10.3390/molecules21070835 [5] ŞANLIER N, GÖKCEN B B, SEZGIN A C. Health benefits of fermented foods[J]. Critical Reviews in Food Science and Nutrition,2017,59(1):506−527. [6] MIKULIC P M, RESCIC J, SCHMITZER V, et al. Changes in fruit quality parameters of four Ribes species during ripening[J]. Food Chemistry,2015,173:363−374. doi: 10.1016/j.foodchem.2014.10.011 [7] AFSHAR-MOHAMMADIAN M, RAHIMI-KOLDEH J, SAJEDI R H. The comparison of protease activity and total protein in three cultivars of kiwifruit of Northern Iran during fruit development[J]. Acta Physiologiae Plantarum,2011,33(2):343−348. doi: 10.1007/s11738-010-0553-3 [8] 郭子微, 侯文赫, 付鸿博, 等. 不同苹果果实发育过程中酚类物质含量及抗氧化能力变化研究[J]. 山东农业科学,2021,53(11):35−44. [GUO Z W, HOU W H, FU H B, et al. Changes of phenolic substance content and antioxidant capacity during the development of different apple fruits[J]. Shandong Agricultural Science,2021,53(11):35−44. doi: 10.14083/j.issn.1001-4942.2021.11.006GUO Z W, HOU W H, FU H B, et al. Changes of phenolic substance content and antioxidant capacity during the development of different apple fruits[J]. Shandong Agricultural Science, 2021, 53(11): 35-44. doi: 10.14083/j.issn.1001-4942.2021.11.006 [9] 韩卫娟, 刁松锋, 张悦, 等. 无核君迁子果实发育成熟过程中生理指标变化规律[J]. 浙江农林大学学报,2022(3):39. [HAN W J, DIAO S F, ZHANG Y, et al. Changes of physiological indexes during fruit development and maturity of Junqianzi without seeds[J]. Journal of Zhejiang A& F University,2022(3):39. doi: 10.11833/j.issn.2095-0756.20210421HAN W J, DIAO S F, ZHANG Y, et al. Changes of physiological indexes during fruit development and maturity of Junqianzi without seeds[J]. Journal of Zhejiang A&F University, 2022(3): 39. doi: 10.11833/j.issn.2095-0756.20210421 [10] 刘周斌, 毛莲珍, 黄宇, 等. 5种不同基因型辣椒果实发育期品质变化[J]. 食品科学,2021,42(23):18−26. [LIU Z B, MAO L Z, HUANG Y, et al. Changes in fruit quality during development of five different genotypes of pepper[J]. Food Science,2021,42(23):18−26. doi: 10.7506/spkx1002-6630-20201117-180LIU Z B, MAO L Z, HUANG Y, et al. Changes in fruit quality during development of five different genotypes of pepper[J]. Food Science, 2021, 42(23): 18-26. doi: 10.7506/spkx1002-6630-20201117-180 [11] 中国人民共和国国家质量监督检验总局, 中国国家标准化管理委员会. GB 5009.3-2016 食品安全国家标准 食品中水分的测定[S]. 北京: 中国标准出版社, 2016General Administration of Quality Supervision and Inspection of the People's Republic of China, Standardization Administration of China. GB 5009.3-2016 National standard for food safety-determination of moisture in food[S]. Beijing: Standards Press of China, 2016. [12] 中国人民共和国国家质量监督检验总局, 中国国家标准化管理委员会. GB 5009.4-2016 食品安全国家标准 食品中灰分的测定[S]. 北京: 中国标准出版社, 2016General Administration of Quality Supervision and Inspection of the People's Republic of China, Standardization Administration of China. GB 5009.4-2016 National standard for food safety-determination of ash in food[S]. Beijing: Standards Press of China, 2016. [13] 中国人民共和国国家质量监督检验总局, 中国国家标准化管理委员会. GB 5009.86-2016 食品安全国家标准 食品中抗坏血酸的测定[S]. 北京: 中国标准出版社, 2016General Administration of Quality Supervision and Inspection of the People's Republic of China, Standardization Administration of China. GB 5009.86-2016 National standard for food safety-determination of ascorbic acid in food[S]. Beijing: Standards Press of China, 2016. [14] BOZINOU E, KARAGEORGOU I, BATRY G, et al. Pulsed electric field extraction and antioxidant activity determination of Moringa oleifera dry leaves: A comparative study with other extraction techniques[J]. Beverages,2019,5(1):8. doi: 10.3390/beverages5010008 [15] MA Y L, GAO J, WEI Z J, et al. Effect of in vitro digestion on phenolics and antioxidant activity of red and yellow colored pea hulls[J]. Food Chemistry,2020,337:1−5. [16] LIN Z, ZHAO M M, XIAO C Q, et al. Practical problems when using ABTS assay to assess the radical-scavenging activity of peptides: Importance of controlling reaction pH and time[J]. Food Chemistry,2016,192:288−294. doi: 10.1016/j.foodchem.2015.07.015 [17] 中国人民共和国国家质量监督检验总局, 中国国家标准化管理委员会. GB/T 21266-2007 食品安全国家标准 辣椒及辣椒制品中辣椒素类物质测定及辣度表示方法[S]. 北京: 中国标准出版社, 2007General Administration of Quality Supervision and Inspection of the People's Republic of China, Standardization Administration of China. GB/T 21266-2007 National standard for food safety-determination of capsaicin in chili pepper and chili pepper products and method for expression of spiciness[S]. Beijing: Standards Press of China, 2007. [18] 中国人民共和国国家质量监督检验总局, 中国国家标准化管理委员会. GB 5009.157-2016 食品安全国家标准 食品中有机酸的测定[S]. 北京: 中国标准出版社, 2016General Administration of Quality Supervision and Inspection of the People's Republic of China, Standardization Administration of China. GB 5009.157-2016 National food safety-determination of organic acids in food[S]. Beijing: China Standards Press, 2016. [19] HAN Q, MIHARA S, HASHIMOTO K, et al. Optimization of tea sample preparation methods for ICP-MS and application to verification of Chinese tea authenticity[J]. Food Science and Technology Research,2014,20:1109−1119. doi: 10.3136/fstr.20.1109 [20] 赵海云. 丘北小椒在文山两种不同生长环境下的品质规律性研究[D]. 昆明: 昆明理工大学, 2015ZHAO H Y. Study on quality regularity of Qiubei Xiaojiao in two different growing environments in Wenshan[D]. Kunming: Kunming University of Science and Technology, 2015. [21] 张伟伟, 盛侠, 孙刚, 等. 宣木瓜果实生长发育规律及其矿质养分特征的研究[J]. 中国林副特产,2010(2):1−5. [ZHANG W W, SHENG X, SUN G, et al. Study on the growth and development law of Xuan papaya fruit and its mineral nutrient characteristics[J]. China Forestry Products,2010(2):1−5. doi: 10.3969/j.issn.1001-6902.2010.02.001ZHANG W W, SHENG X, SUN G, et al. Study on the growth and development law of Xuan papaya fruit and its mineral nutrient characteristics[J]. China Forestry Products, 2010, (2): 1-5. doi: 10.3969/j.issn.1001-6902.2010.02.001 [22] 卢合全, 沈法富, 刘凌霄, 等. 植物蔗糖合成酶功能与分子生物学研究进展[J]. 中国农学通报,2005(7):34−37,57. [LU H Q, SHEN F F, LIU L X, et al. Research progress of plant sucrose synthase function and molecular biology[J]. China Agricultural Science Bulletin,2005(7):34−37,57. doi: 10.3969/j.issn.1000-6850.2005.07.011LU H Q, SHEN F F, LIU L X, et al. Research progress of plant sucrose synthase function and molecular biology[J]. China Agricultural Science Bulletin, 2005, (7): 34-37, 57. doi: 10.3969/j.issn.1000-6850.2005.07.011 [23] YOURYON P, SUPAPVANICH S. Physicochemical quality and antioxidant changes in 'Leb Mue Nang' banana fruit during ripening[J]. Agriculture & Natural Resources,2017,51(1):47−52. [24] ERCISLI S, AKBULUT M, OZDEMIR O, et al. Phenolic and antioxidant diversity among persimmon (Diospyrus kaki L. ) genotypes in Turkey[J]. International Journal of Food Sciences and Nutrition,2008,59(6):477−482. doi: 10.1080/09637480701538262 [25] ZONNEVELD M V, RAMIREZ M, WILLIAMS D E, et al. Screening genetic resources of capsicum peppers in their primary center of diversity in Bolivia and Peru[J]. PLoS One,2015,10(9):e0134663. doi: 10.1371/journal.pone.0134663 [26] 姜喜, 唐章虎, 吴翠云, 等. 3种梨果实发育过程中酚类物质及其抗氧化能力分析[J]. 食品科学,2021,42(23):99−105. [JIANG X, TANG Z H, WU C Y, et al. Analysis of phenolic substances and their antioxidant capacity during the development of three kinds of pear fruits[J]. Food Science,2021,42(23):99−105. doi: 10.7506/spkx1002-6630-20201026-258JIANG X, TANG Z H, WU C Y, et al. Analysis of phenolic substances and their antioxidant capacity during the development of three kinds of pear fruits[J]. Food Science, 2021, 42(23): 99-105. doi: 10.7506/spkx1002-6630-20201026-258 [27] 王燕, 王儒彬, 孙磊, 等. 不同采摘期连翘叶中总黄酮、总酚酸含量与DPPH自由基清除能力的相关性[J]. 中国实验方剂学杂志,2011,17(16):109−112. [WANG Y, WANG R B, SU L, et al. Correlation of total flavonoids, total phenolic acids and DPPH free radical scavenging ability in Forsythia leaves at different picking periods[J]. Chinese Journal of Experimental Formulas,2011,17(16):109−112. doi: 10.3969/j.issn.1005-9903.2011.16.033WANG Y, WANG R B, SU L, et al. Correlation of total flavonoids, total phenolic acids and DPPH free radical scavenging ability in Forsythia leaves at different picking periods[J]. Chinese Journal of Experimental Formulas, 2011, 17(16): 109-112. doi: 10.3969/j.issn.1005-9903.2011.16.033 [28] 陈芳甜. 观赏海棠果抗氧化活性的研究[D]. 泰安: 山东农业大学, 2012CHEN F T. Study on the antioxidant activity of ornamental crabapple fruit[D]. Tai'an: Shandong Agricultural University, 2012. [29] 罗凤莲, 夏延斌, 欧阳建勋, 等. Scoville感官评定法测定辣椒辣度[J]. 食品科技,2006(10):257−259. [LUO F L, XIA Y B, OUYANG J X, et al. Scoville sensory evaluation method to determine the hotness of pepper[J]. Food Science and Technology,2006(10):257−259. doi: 10.3969/j.issn.1005-9989.2006.10.076LUO F L, XIA Y B, OUYANG J X, et al. Scoville sensory evaluation method to determine the hotness of pepper[J]. Food Science and Technology, 2006(10): 257-259. doi: 10.3969/j.issn.1005-9989.2006.10.076 [30] 陈斌, 张晓芬, 耿三省, 等. 不同类型辣椒辣度的测定及分析[J]. 辣椒杂志,2012,10(1):38−41. [CHEN B, ZHANG X F, GENG S S, et al. Determination and analysis of the spiciness of different types of peppers[J]. Chili Journal,2012,10(1):38−41. doi: 10.16847/j.cnki.issn.1672-4542.2012.01.013CHEN B, ZHANG X F, GENG S S, et al. Determination and analysis of the spiciness of different types of peppers[J]. Chili Journal, 2012, 10(1): 38-41. doi: 10.16847/j.cnki.issn.1672-4542.2012.01.013 [31] 张楠, 孙开奇, 沙博郁, 等. 湿法消解-电感耦合等离子体发射光谱法测定保健食品中7种常见矿物质元素[J]. 食品安全质量检测学报,2021,12(2):800−804. [ZHANG N, SUN K Q, SHA B Y, et al. Determination of seven common mineral elements in health food by wet digestion-inductively coupled plasma emission spectrometry[J]. Journal of Food Safety and Quality Inspection,2021,12(2):800−804. doi: 10.19812/j.cnki.jfsq11-5956/ts.2021.02.070ZHANG N, SUN K Q, SHA B Y, et al. Determination of seven common mineral elements in health food by wet digestion-inductively coupled plasma emission spectrometry[J]. Journal of Food Safety and Quality Inspection, 2021, 12(2): 800 -804. doi: 10.19812/j.cnki.jfsq11-5956/ts.2021.02.070 [32] 宋丽萍, 王文禄, 刘敏, 等. 微量元素及植物生长调节剂对蓖麻生长发育的影响[J]. 吉林农业科学,1992(1):62−64. [SONG L P, WANG W L, LIU M, et al. Effects of trace elements and plant growth regulators on the growth and development of castor oil[J]. Jilin Agricultural Science,1992(1):62−64. doi: 10.16423/j.cnki.1003-8701.1992.01.015SONG L P, WANG W L, LIU M, et al. Effects of trace elements and plant growth regulators on the growth and development of castor oil[J]. Jilin Agricultural Science, 1992, (1): 62-64. doi: 10.16423/j.cnki.1003-8701.1992.01.015 [33] ZHANG C, XIONG Z, YANG H, et al. Changes in pericarp morphology, physiology and cell wall composition account for flesh firmness during the ripening of blackberry (Rubus spp. ) fruit[J]. Scientia Horticulturae,2019,250:59−68. doi: 10.1016/j.scienta.2019.02.015 [34] HUI W A, JW B, ASM C, et al. Effects of postharvest ripening on physicochemical properties, microstructure, cell wall polysaccharides contents (pectin, hemicellulose, cellulose) and nanostructure of kiwifruit (Actinidia deliciosa) [J]. Food Hydrocolloids,2021,118:106808. doi: 10.1016/j.foodhyd.2021.106808 [35] 葛帅, 王蓉蓉, 王颖瑞, 等. 湖南常见辣椒品种游离氨基酸主成分分析及综合评价[J]. 食品科学技术学报,2021,39(2):91−102. [GE S, WANG R R, WANG Y R, et al. Principal component analysis and comprehensive evaluation of free amino acids in common pepper varieties in Hunan[J]. Journal of Food Science and Technology,2021,39(2):91−102. doi: 10.12301/j.issn.2095-6002.2021.02.012GE S, WANG R R, WANG Y R, et al. Principal component analysis and comprehensive evaluation of free amino acids in common pepper varieties in Hunan[J]. Journal of Food Science and Technology, 2021, 39(2): 91-102. doi: 10.12301/j.issn.2095-6002.2021.02.012 -