Assisted Extraction Combined with Effervescent Tablets and Rhodamine B Fluorescence Probe for Rapid Detection of Elemental Mercury in Grain
-
摘要: 为建立一种粮食中汞元素(Hg)的快速检测方法。自主合成罗丹明B型荧光探针,并利用功能离子液体作为探针体系的载体和生色基团。使原本的荧光探针体系,变成可见光探针体系。所建立的可见光探针体系与Hg结合,根据Hg含量的不同呈现不同深浅的玫红色。在550 nm波长下,样品中Hg含量0.5~20 ng/g范围内,显色的探针体系紫外吸光度与Hg含量成正比。结合泡腾片暴气辅助提取的方式,控制暴气反应的初始速度,减少暴气过程Hg的损失,达到准确定性定量检测的目的。该检测方法回收率90.98%~102.46%,精密度RSD为2.76%~4.76%,检出限1.0 ng/g。该快速检测方法具有高效、准确、灵敏度高、特异性强,适用范围广等优势。适用于谷物,小麦等粮食及其食品中汞元素的大批量筛查和检测工作。同时该方法和原理可以为可视化探针快速检测领域提供一定的参考和实验思路。Abstract: To establish a rapid method for determination of mercury in grain, Rhodamine type B fluorescent probe was synthesized and used as the carrier and chromogenic group of the probe system. The original fluorescent probe system was made into a visible light probe system, where this principle was used in conjunction with extraction assisted by effervescent tablets to establish a rapid method for the detection of elemental mercury (Hg) in grain. The initial speed of the blast reaction was controlled via the use of the bubble tablet blast method and the loss of Hg could be reduced in the course of the initial blast. After combining with different concentrations of Hg, the probe system make the originally colorless probe system turn into a rosy red color. The color developing probe system was in the range of 0.5~20 ng/g of Hg content in the sample at 550 nm, and the shade of color was proportional to the Hg content, whose range in the samples could also be assessed using a colorimetric card with naked eye. In the present study, the recoveries were 90.98%~102.46%, the precision RSD was 2.76%~4.76% and the detection limit was 1.0 ng/g. The rapid detection method has the advantages of high efficiency, accuracy, high sensitivity, specificity and wide applicability. Taken together, it is suitable for bulk screening and detection of elemental mercury in grains, wheat and other grains and their food products. Also, the method and principle might provide novel insights for the field of visualization probe rapid detection.
-
表 1 米粉样品,残留样品及溶液中汞含量检测结果
Table 1. Results of testing mercury content in rice flour samples, residual samples and solutions
样品序号 样品检测结果
(ng/g)残留米粉样品检测结果(ng/g) 氢汞气体产气效率(%) 气体发生器中溶液检测结果(ng/mL) 气体收集装置中溶液检测结果(ng/mL) 吸附效率
(%)米粉1号 1.29 0.104 92.94 0.00(未检出) 1.18 99.49 米粉2号 3.33 0.152 95.44 0.00(未检出) 3.15 99.12 米粉3号 9.84 0.225 97.71 0.00(未检出) 9.39 97.66 表 2 米粉样品,接收液,离子液体中汞含量检测结果
Table 2. Results of testing mercury content in rice flour samples, receiving liquid and ionic liquid
样品序号 样品检测结果
(ng/g)离子液体萃取后气体发生器中
溶液检测结果(ng/mL)残留量
(%)未经离子液体萃取5 mL接收液中汞
的理论含量(ng)离子液体中汞的含量
(ng)吸附效率
(%)米粉1号 1.29 0.064 4.96 5.90 5.71 96.78 米粉2号 3.33 0.074 2.22 15.75 15.26 96.89 米粉3号 9.84 0.077 0.78 46.95 45.91 97.78 表 3 方法的准确度及精密度
Table 3. The accuracy and precision of the method
样品
序号Hg含量质
控理论值
(ng/g)本方法
检测结果
(ng/g)回收率
(%)RSD
(%)ICP-MS
检测结果
(ng/g)回收率
(%)RSD
(%)米粉1号 1.22±0.21 1.24 101.64 4.76 1.06 86.89 2.89 1.25 102.46 1.09 89.34 1.17 95.90 1.12 91.80 1.11 90.98 1.15 94.26 1.15 94.26 1.11 90.98 1.23 100.82 1.08 88.52 米粉2号 3.41±0.32 3.35 98.24 2.78 3.29 98.80 2.80 3.26 95.60 3.31 99.40 3.19 93.55 3.22 96.70 3.29 96.48 3.34 100.30 3.44 100.88 3.16 94.89 3.22 94.43 3.11 93.39 米粉3号 10.11±0.68 10.25 101.38 2.76 9.28 91.79 2.80 9.87 97.63 9.74 96.34 10.12 100.10 9.68 95.75 10.22 101.09 9.24 91.39 9.78 96.74 9.53 94.26 9.56 94.56 9.42 93.18 表 4 方法的检出限
Table 4. The detection limit of the method
20份阴性面粉样品吸光度 0.0021 0.0018 0.0027 0.0022 0.0019 0.0014 0.0015 0.0012 0.0021 0.0016 0.0024 0.0023 0.0014 0.0019 0.0021 0.0020 0.0025 0.0019 0.0017 0.0013 标准偏差(噪声) 0.00049 5倍噪声 0.00245 最低检测浓度理论值(ng/mL) 0.44 表 5 检出限验证结果
Table 5. Detection limit verification result
样品序号 加标浓度(ng/g) 检测结果(ng/g) 回收率(%) RSD(%) 1号加标样品 0.5 0.33 66.00 32.05 0.61 122.00 0.41 82.00 2号加标样品 1.0 0.95 95.00 7.36 0.90 90.00 1.04 104.00 表 6 泡腾片辅助提取对比结果
Table 6. Extraction and comparison of effervescent tablets
样品
序号Hg含量
理论值
(ng/g)ICP-MS
检测结果
(ng/g)本方法
检测结果
(ng/g)本方法不使用
泡腾片检测
结果(ng/g)米粉1号 1.22±0.21 1.08 1.11 0.74 米粉2号 3.41±0.32 3.21 3.26 2.54 米粉3号 10.11±0.68 9.58 9.77 8.14 表 7 干扰离子对检测方法的影响
Table 7. The effect of interfering ions on the detection method
干扰离子加标量
(ng/g)汞离子加标量
(ng/g)显色现象 实测浓度
(ng/g)回收率
(%)RSD
(%)
2.02.0 微红色 1.91 95.5 3.40 微红色 1.85 92.5 微红色 1.98 99.0
10.0微红色 2.04 102.0 4.21 微红色 2.11 105.5 微红色 1.94 97.0
50.0微红色 1.84 92.0 7.88 微红色 1.96 98.0 微红色 2.15 107.5 -
[1] 冯新斌, 史建波, 李平, 等. 我国汞污染研究与履约进展[J]. 中国科学院院刊,2020,35(11):1344−1348. [FENG X B, SHI J B, LI P, et al. Research and performance of mercury pollution in China[J]. Bulletin of Chinese Academy of Sciences,2020,35(11):1344−1348.FENG X B, SHI J B, LI P, et al. Research and performance of mercury pollution in China[J]. Bulletin of Chinese Academy of Sciences, 2020, 35(11): 1344-1348. [2] 吴丽珠, 高红梅, 马英. 上海市青浦区主要市售谷物及其制品的铅, 镉, 汞污染及健康风险评估[J]. 上海预防医学,2019,31(6):451−456. [WU L Z, GAO H M, MA Y. Lead, cadmium and mercury pollution and health risk assessment for main marketed grain and its products in Qingpu District of Shanghai[J]. Shanghai Journal of Preventive Medicine,2019,31(6):451−456.WU L Z, GAO H M, MA Y. Lead, cadmium and mercury pollution and health risk assessment for main marketed grain and its products in Qingpu District of Shanghai[J]. Shanghai Journal of Preventive Medicine, 2019, 31(6): 451-456. [3] 王艳敏, 周鸿, 熊丽, 等. 江西省蔬菜中重金属污染状况调查及评价[J]. 现代预防医学,2020,47(7):1202−1206. [WANG Y M, ZHOU H, XIONG L, et al. Heavy metal pollution in vegetables, Jiangxi Province[J]. Modern Preventive Medicine,2020,47(7):1202−1206.WANG Y M, ZHOU H, XIONG L, et al. Heavy metal pollution in vegetables, Jiangxi Province[J]. Modern Preventive Medicine, 2020, 47(7): 1202-1206. [4] 法焕宝, 闫兴菊, 尹伟, 等. 单羟基卟羟啉分光光度法测定金属铅, 汞离子[J]. 广东化工,2010,38(1):154−156. [FA H B, YAN X J, YI W, et al. Determination of metallic lead and mercury ions by mono-hydroxyporphyrin spectrophotometry[J]. Guangdong Chemical Industry,2010,38(1):154−156.FA H B, YAN X J, YI W, et al. Determination of metallic lead and mercury ions by mono-hydroxyporphyrin spectrophotometry[J]. Guangdong Chemical Industry, 2010, 38(1): 154-156. [5] 张夏红, 董雁, 荀瑞芝, 等. 1-(4-二甲氨基苯亚甲基氨基)-4-甲基硫脲的合成及荧光猝灭法测定海产品中的微量汞[J]. 化学研究与应用,2020,32(10):1839−1846. [ZHANG X H, DONG Y, XUN R Z, et al. Synthesis of 1-(4-dimethyl aminobenzylidene) -4-methyl-thiourea and flucenorese quenching determination of trace mercury in sea products[J]. Chemistry Research and Application,2020,32(10):1839−1846.ZHANG X H, DONG Y, XUN R Z, et al. Synthesis of 1-(4-dimethyl aminobenzylidene) -4-methyl-thiourea and flucenorese quenching determination of trace mercury in sea products[J]. Chemistry Research and Application, 2020, 32(10): 1839-1846. [6] 操江飞, 韦寿莲, 廖根成. 纳米银溶胶催化氧化-分光光度法快速测定水中汞[J]. 理化检验:化学分册,2020,56(7):816−821. [CAO J F, WEI S L, LIAO G C. Rapid Determination of mercury in water by catalytic oxidation of nanometer silver sol and spectrophotometry[J]. Physical Testing and Chemical Analysis(Part B:Chemical Analysis),2020,56(7):816−821.CAO J F, WEI S L, LIAO G C. Rapid Determination of mercury in water by catalytic oxidation of nanometer silver sol and spectrophotometry[J]. Physical Testing and Chemical Analysis(Part B: Chemical Analysis), 2020, 56(7): 816-821. [7] 贺爱珍. 吹扫捕集-气相色谱-冷原子荧光光谱法测定水中烷基汞的方法研究[J]. 科学技术创新,2021(21):40−42. [HE A Z. Determination of alkylmercury in water by purge and capture gas chromatography-cold atomic fluorescence spectrometry[J]. Scientific and Technological Innovation,2021(21):40−42. doi: 10.3969/j.issn.1673-1328.2021.21.019HE A Z. Determination of alkylmercury in water by purge and capture gas chromatography-cold atomic fluorescence spectrometry[J]. Scientific and Technological Innovation, 2021(21): 40-42. doi: 10.3969/j.issn.1673-1328.2021.21.019 [8] 郑明, 廖红卫, 吴俊慧, 等. ICP-MS法测定马来酸艾维替尼中钯, 砷, 镉, 汞, 铅的残留量[J]. 药物分析杂志,2020,40(5):837−842. [ZHENG M, LIAO H W, WU J H, et al. Determination of Pd, As, Cd, Hg and Pb residue in avitinib maleate by ICP-MS[J]. Chin J Pharm Anal,2020,40(5):837−842.ZHENG M, LIAO H W, WU J H, et al. Determination of Pd, As, Cd, Hg and Pb residue in avitinib maleate by ICP-MS[J]. Chin J Pharm Anal, 2020, 40(5): 837-842. [9] 张春华, 陈春桃, 韩必恺, 等. ICP-MS测定5种中药注射液中重金属及有害元素[J]. 中国测试,2020,46(1):71−76. [ZHANG C H, CHEN C T, HAN B K, et al. Determination of heavy metals and harmful elements in five traditional Chinese medicine injections using inductively coupled plasma mass spectrometry (ICP-MS)[J]. China Measurement & Test,2020,46(1):71−76.ZHANG C H, CHEN C T, HAN B K, et al. Determination of heavy metals and harmful elements in five traditional Chinese medicine injections using inductively coupled plasma mass spectrometry (ICP-MS)[J]. China Measurement & Test, 2020, 46(1): 71-76. [10] 徐迪伟, 陈荣乐. ICP-MS检测饮用水中31种元素的方法研究[J]. 中国卫生检验杂志,2017,27(19):2761−2764. [XU D W, CHEN R L. Study on the determination of 31 metal elements in drinking water by inductively coupled plasma mass spectrometry[J]. Chin J Health Lab Tec,2017,27(19):2761−2764.XU D W, CHEN R L. Study on the determination of 31 metal elements in drinking water by inductively coupled plasma mass spectrometry[J]. Chin J Health Lab Tec, 2017, 27(19): 2761-2764. [11] 杜庆鹏, 陈安珍, 田金改, 等. 中药材中重金属汞快速检测试纸方法研究[J]. 中国药事,2010,24(12):1175−1177. [DU Q P, CHEN A Z, TIAN J G, et al. Study on method for rapid determination of mercury in traditional Chinese medicines[J]. Chinese Pharmaceutical Affairs,2010,24(12):1175−1177.DU Q P, CHEN A Z, TIAN J G, et al. Study on method for rapid determination of mercury in traditional Chinese medicines[J]. Chinese Pharmaceutical Affairs, 2010, 24(12): 1175-1177. [12] 肖情, 陈琳, 李雨晴, 等. 汞离子电化学传感器的研究与应用[J]. 化学传感器,2019,38(2):41−50. [XIAO Q, CHEN L, LI Y Q, et al. Research and application of electrochemical sensor for mercury ion[J]. Chemical Sensors,2019,38(2):41−50.XIAO Q, CHEN L, LI Y Q, et al. Research and application of electrochemical sensor for mercury ion[J]. Chemical Sensors, 2019, 38(2): 41-50. [13] 柳心梅, 田巍, 冯春梅, 等. 重金属镉特异性抗体的制备及icELISA检测方法的建立[J]. 现代食品科技,2020,36(8):325−332. [LIU X H, TIAN W, FENG C M, et al. Preparation of specific antibody to cadmium and establishment of icELISA detection method[J]. Modern Food Science & Technology,2020,36(8):325−332.LIU X H, TIAN W, FENG C M, et al. Preparation of specific antibody to cadmium and establishment of icELISA detection method[J]. Modern Food Science & Technology, 2020, 36(8): 325-332. [14] 管怡晗, 黎广进, 刘盛华, 等. 汞离子比色型荧光探针的合成与性质[J]. 环境化学,2021,40(8):2544−2550. [GUAN Y H, LI G J, LIU C H, et al. Synthesis and properties of colorimetric fluorescent probe for mercury ions[J]. Environmental Chemistry,2021,40(8):2544−2550.GUAN Y H, LI G J, LIU C H, et al. Synthesis and properties of colorimetric fluorescent probe for mercury ions[J]. Environmental Chemistry, 2021, 40(8): 2544-2550. [15] ZHANG M, LIU F, KE X, et al. Polyaspartamide fluorescent probe containing rhodamine B and sulfadiazine groups for molecular imaging and diagnosis[J]. Chinese Journal of Organic Chemistry,2020,40(4):938. doi: 10.6023/cjoc201908003 [16] ZHANG K, ZHANG J M. A fluorescent probe for the detection of Hg2+ based on rhodamine derivative and modified CdTe quantum dots[J]. Research on Chemical Intermediates,2020(46):987−997. [17] JANSSEN C. Heavy metal extractions from NaCl brines to pseudoprotic ionic liquids[J]. Industrial & Engineering Chemistry Research,2021,60(4):1808−1816. [18] PRADEEP K, ASHOK K. Extraction of uranium from aqueous solution of nitric acid and organic solvent using ionic liquid[J]. Asian Journal of Chemistry: An International Quarterly Research Journal of Chemistry,2021,33(1):43−48. [19] IMDAD S, DOHARE R K. A critical review on heavy metals removal using ionic liquid membranes from the industrial wastewater[J]. Chemical Engineering and Processing - Process Intensification,2022,173:108812−1-108812-13. doi: 10.1016/j.cep.2022.108812 [20] HANOOO H D, KOWSARI E, ABDOUSS M, et al. Efficient preparation of acidic ionic liquid-functionalized reduced graphene oxide and its catalytic performance in synthesis of benzimidazole derivatives[J]. Research on Chemical Intermediates,2017,43(3):1751−1766. doi: 10.1007/s11164-016-2727-0 [21] 王璐, 张珍, 洪霞, 等. 混合型功能离子液体用于复杂基质样品中汞离子检测的研究[J]. 云南化工,2018,45(10):91−93. [WANG L, ZHANG Z, HONG X, et al. Study on mercury ion detection in complex matrix samples by mixed functional ionic liquids[J]. Yunnan Chemical Technology,2018,45(10):91−93. doi: 10.3969/j.issn.1004-275X.2018.10.035WANG L, ZHANG Z, HONG X, et al. Study on mercury ion detection in complex matrix samples by mixed functional ionic liquids[J]. Yunnan Chemical Technology, 2018, 45(10): 91-93. doi: 10.3969/j.issn.1004-275X.2018.10.035 [22] CHEN D D, MAO H L, HONG Y N. Hexaphenyl-1, 3-butadiene derivative: A novel ''turn-on'' rapid fluorescent probe for intraoperative pathological diagnosis of hepatocellular carcinoma[J]. Materials Chemistry Frontiers,2021,4(9):2716−2722. [23] YANG Y, LI R, ZHANG S, et al. A fluorescent nanoprobe based on cell-penetrating peptides and quantum dots for ratiometric monitoring of pH fluctuation in lysosomes[J]. Talanta,2021,227:122208. doi: 10.1016/j.talanta.2021.122208 [24] 张嘉莹, 赵丹, 曹晨阳, 等. 泡腾辅助-悬浮固化-分散液液微萃取结合液相色谱法测定食醋中多效唑和异丙甲草胺农药残留[J]. 分析试验室,2018,37(11):1282−1284. [ZHANG J Y, ZHAO D, CAO C Y, et al. Effervescent assisted solidification of floating organic droplet dispersion liquid-liquid microextraction combined with HPLC for the detection of pesticides in vinegar[J]. Chinese Journal of Analysis Laboratory,2018,37(11):1282−1284.ZHANG J Y, ZHAO D, CAO C Y, et al. Effervescent assisted solidification of floating organic droplet dispersion liquid-liquid microextraction combined with HPLC for the detection of pesticides in vinegar[J]. Chinese Journal of Analysis Laboratory, 2018, 37(11): 1282-1284. [25] 张桂芳. 砷斑法对饲料砷中毒含量的测定[J]. 现代畜牧科技,2014(5):227−227. [ZHANG G F. Determination of arsenic poisoning in feed by arsenic spot method[J]. Technical Advisor for Animal Husbandry,2014(5):227−227.ZHANG G F. Determination of arsenic poisoning in feed by arsenic spot method[J]. Technical Advisor for Animal Husbandry, 2014(5): 227-227. [26] 刘慧, 孙秀兰. 微波消解-ICP-MS法测定红薯中18种元素[J]. 粮食与饲料工业,2021(1):67−71. [LIU H, SUN X L. Determination of 18 elements in sweet potato by microwave digestion ICP MS[J]. Cereal & Feed Industry,2021(1):67−71.LIU H, SUN X L. Determination of 18 elements in sweet potato by microwave digestion ICP MS[J]. Cereal & Feed Industry, 2021(1): 67-71. -