Studies on Phenolic Profile, Antioxidant and Anticancer Effects of Different Polar Parts of Ethanol Extract of Jinhua Tibetan Tea
-
摘要: 研究金花藏茶醇提物不同极性部位多酚成分及其抗氧化和抗肿瘤活性。采用液-液萃取金花藏茶醇提物,得到乙酸乙酯层、正丁醇层和水层三个极性部位。采用福林酚法和AlCl3-乙酸钾比色法分别测量醇提物及三个极性部位的总多酚和总黄酮含量,通过高效液相色谱法(HPLC)分析醇提物及三个极性部位的主要多酚类单体含量,并采用DPPH、ABTS+自由基清除以及铁离子螯合三种方法比较各类部位的抗氧化作用,通过CCK8法检测不同极性部位对人宫颈癌HeLa细胞的增殖抑制作用。结果表明:金花藏茶乙酸乙酯层含有的多酚和黄酮含量较其它不同极性部位最多,分别为384.65 mg/g和188.82 mg/g,以没食子酸(GA)、没食子儿茶素(GC)和表没食子儿茶素(EGC)为主要酚类成分。抗氧化活性试验显示,对照维生素E,不同极性部位清除DPPH和ABTS+自由基能力的大小为,维生素E>乙酸乙酯层>正丁醇层>醇提物>水层,各样品间差异显著(P<0.05);对照EDTA,不同极性部位均有一定的亚铁离子螯和能力,EDTA(IC50为48.3 µg/mL)>乙酸乙酯层(332.4 µg/mL)>正丁醇(1332.0 µg/mL)>醇提物(1846.0 µg/mL)及水层(1952.0 µg/mL),除水相和醇提物间没有显著性差异(P>0.05)外,其他样品之间均差异显著(P<0.05)。结果表明抗氧化综合能力排序为乙酸乙酯层>正丁醇层>醇提物>水层。各极性部位对人宫颈癌HeLa细胞均具有一定的增殖抑制作用,且作用均存在剂量-效应关系,其中乙酸乙酯层对HeLa细胞的生长抑制作用最强(IC50为111.6 µg/mL)。相对其它各层分,乙酸乙酯层抗氧化活力及抑制HeLa细胞增殖能力均最强,这与其中多酚和黄酮含量最多有关。本研究为金花藏茶的抗氧化和抗肿瘤的健康功效提供了初步的科学依据。Abstract: The phenolic components, antioxidation, and anticancer effects of different polar parts of ethanol extract of Jinhua Tibetan tea were studied. Three polar fractions, i.e., ethyl acetate, n-butyl alcohol, and water fractions, of ethanol extract of Jinhua Tibetan tea were obtained via liquid-liquid extraction process. The contents of total polyphenols and total flavonoids of the three fractions and ethanol extract were determined using Folin-Ciocalteu and aluminum chloride-potassium acetate method, respectively. The contents of tea polyphenol monomers in all the parts were determined using high-performance liquid chromatography (HPLC) method. Their antioxidant activities of all the parts were tested and compared using DPPH radical scavenging, ABTS+ radical scavenging, and Fe2+ ion chelating methods. Their anti-proliferation effects on human cervical cancer HeLa cell were evaluated using cell counting Kit8. Results indicated that ethyl acetate fraction had the highest contents of total polyphenols and total flavonoids, as 384.65 mg/g and 188.82 mg/g, respectively, including gallic acid (GA), gallocatechin (GC), and epigallocatechin (EGC) as major phenolic monomers. Antioxidant activity test showed that compared with vitamin E, the DPPH and ABTS+ radical scavenging capacity of all the parts were as the sequence vitamin E>ethyl acetate fraction>n-butyl alcohol fraction>ethanol extract>water fraction, with P<0.05. When compared with EDTA, all parts possessed some Fe2+ ion chelating capacity, being EDTA (IC50=48.3 µg/mL)>ethyl acetate fraction (332.4 µg/mL)>n-butyl alcohol fraction (1332.0 µg/mL)>ethanol extract (1846.0 µg/mL) and water fraction (1952.0 µg/mL), with P<0.05 between the parts, but there was not significant difference between water fraction and ethanol extract with the P>0.05. All the results indicated that the general antioxidant ability sequence was ethyl acetate fraction>n-butyl alcohol fraction>ethanol extract>water fraction. All the parts showed anti-proliferation activity to human cervical cancer HeLa cell, and all with dose-effect relationship. Ethyl acetate fraction showed the strongest anti-proliferation activity (IC50 111.6 µg/mL) to the HeLa cell. In conclusion, ethyl acetate fraction possessed the strongest capacity of both antioxidation and anti-proliferation to HeLa cell, resulted from its highest contents of polyphenols and flavonoids. The studies provide some preliminary scientific evidence of the antioxidant and anticancer effects of Jinhua Tibetan tea.
-
表 1 对照回归方程及线性范围(n=3)
Table 1. Contrast regression equation and linear range (n=3)
多酚单体 线性回归方程 R2 线性范围(μg/mL) GA y=5.5752x−12.024 0.9996 1.72~440.00 GC y=0.3784x−0.6164 0.9987 15.68~784.00 EGC y=0.3229x+0.2376 0.9999 15.68~784.00 C y=1.0759x+0.0043 0.9999 7.84~784.00 EC y=1.5819x−6.4182 0.9993 6.80~435.55 EGCG y=2.8877x−15.209 0.9992 6.80~435.50 GCG y=2.9525x−15.285 0.9992 6.80~435.55 ECG y=3.483x−15.813 0.9993 6.80~435.55 CG y=3.266x−9.2289 0.9994 6.81~217.77 表 2 金花藏茶醇提物及不同极性部位多酚和黄酮含量(mg/g)
Table 2. Contents of polyphenols and flavonoids in alcohol extracts of Jinhua Tibetan tea and different polar parts (mg/g)
不同极性部位 醇提物 乙酸乙酯层 正丁醇层 水层 多酚 200.06±9.96b 384.65±23.62c 228.37±4.38b 166.25±10.33a 黄酮 127.72±9.98c 188.82±8.48d 109.82±4.44b 49.81±10.65a 注:同行不同字母表示差异显著(P<0.05)。 表 3 金花藏茶醇取物及不同极性部位多酚单体含量(mg/g)
Table 3. Contents of mono and caffeine in alcohol extracts of Jinhua Tibetan tea and different polar parts (mg/g)
不同极性部位 GA GC EGC C EC EGCG GCG ECG CG 醇提物 3.75±0.01c 0.94±0.02a / / / 0.50±0.01a 0.55±0.00a 0.34±0.00a 0.38±0.00a 乙酸乙酯层 4.63±0.04d 2.25±0.01b 1.96±0.02 0.43±0.00 0.60±0.00 1.14±0.00b 1.25±0.00b 0.63±0.00b 0.42±0.00b 正丁醇层 1.32±0.02b / / / / / / / / 水层 0.72±0.00a / / / / / / / / 注:同列不同字母表示差异显著(P<0.05);/表示低于检出限。 -
[1] 褚剑轲, 曾茂, 陈晓芳, 等. PPARα在雅安藏茶水提物降脂活性中的功能研究[J]. 四川大学学报(自然科学版),2019,56(6):1177−1181. [CHU Jianke, ZENG Mao, CHEN Xiaofang, et al. Study on the function of PPARα in the lipid-lowering activity of Ya’an Tibetam tea aqueous extract[J]. Journal of Sichuan University (Natural Science Edition),2019,56(6):1177−1181. doi: 10.3969/j.issn.0490-6756.2019.06.029CHU Jianke, ZENG Mao, CHEN Xiaofang, et al. Study on the function of PPARα in the lipid-lowering activity of Ya’an Tibetam tea aqueous extract[J]. Journal of Sichuan University (Natural Science Edition), 2019, 56(6): 1177-1181. doi: 10.3969/j.issn.0490-6756.2019.06.029 [2] 胡燕. 雅安藏茶的主要活性成分及保健功能研究进展[J]. 新宝登录入口(中国)有限公司,2019,40(5):216−321. [HU Yan. Research progress on main active constituents and healthcare function of Ya’an Tibetan tea[J]. Science and Technology of Food Industry,2019,40(5):216−321. doi: 10.13386/j.issn1002-0306.2019.05.054HU Yan. Research progress on main active constituents and healthcare function of Ya’an Tibetan tea[J]. Science and Technology of Food Industry, 2019, 40(5): 216-321. doi: 10.13386/j.issn1002-0306.2019.05.054 [3] 王昱筱, 周才琼. 红茶、绿茶和普洱熟茶体外抗氧化作用比较研究[J]. 食品工业,2016,37(4):64−68. [WANG Yuxiao, ZHOU Caiqiong. Comparative study of antioxidant effect on black tea, green tea and Pu’er ripe tea in vitro[J]. Food Industry,2016,37(4):64−68.WANG YuXiao, ZHOU Caiqiong. Comparative study of antioxidant effect on Black tea, Green ta and Pu’er ripe tea in vitro[J]. Food Industry, 2016, 37(4): 64-68. [4] 熊元元, 王云, 唐晓波, 等. 雅安藏茶的化学成分及生物活性研究进展[J]. 安徽农业科学,2022,50(13):14−17,26. [[XIONG Yuanyuan, WANG Yun, TANG Xiaobo, et al. Research progress on chemical composition and biological acivity of Ya’an Tibetan tea[J]. Journal of Anhui Agricultural Sciences,2022,50(13):14−17,26. doi: 10.3969/j.issn.0517-6611.2022.13.005[XIONG Yuanyuan, WANG Yun, TANG Xiaobo, et al. Research progress on chemical composition and biological acivity of Ya’an Tibetan tea[J]. Journal of Anhui Agricultural Sciences, 2022, 50(13): 14-17, 26. doi: 10.3969/j.issn.0517-6611.2022.13.005 [5] YUAN Y, ZHANG B, HE J, et al. Combinations of Tibetan tea and medicine food homology herbs: A new strategy for obesity prevention[J]. Food Science & Nutrition,2023,11(1):504−515. [6] 吕晓华, 徐家玉, 孙冉, 等. 藏茶保健作用的人体试饮研究[J]. 食品研究与开发,2017,38(4):168−171. [LÜ Xiaohua, XU Jiayu, SUN Ran et al. Human trial health effects of Tibetan tea[J]. Food Research and Development,2017,38(4):168−171. doi: 10.3969/j.issn.1005-6521.2017.04.038LÜ Xiaohua, XU Jiayu, SUN Ran et al. Human trial health effects of Tibetan tea[J]. Food Research and Development, 2017, 38(04): 168-171. doi: 10.3969/j.issn.1005-6521.2017.04.038 [7] 李解, 林莉岚, 谭晓琴, 等. 雅安藏茶对 60Coγ辐射损伤小鼠的防护作用[J]. 营养学报,2017,39(4):395−399. [LI Jie, LIN Lilan, TAN Xiaoqin, et al. Protection of Ya’an tea against 60Coγ radiation injury in mice[J]. Acta Nutrimenta Sinica,2017,39(4):395−399. doi: 10.3969/j.issn.0512-7955.2017.04.018LI Jie, LIN Lilan, TAN Xiaoqin, et al. Protection of Ya’an tea against 60Coγ radiation injury in mice[J]. Acta Nutrimenta Sinica, 2017, 39(4): 395-399. doi: 10.3969/j.issn.0512-7955.2017.04.018 [8] HUANG F, ZHENG X, MA X, et al. Theabrownin from Pu-erh tea attenuates hypercholesterolemia via modulation of gut microbiota and bile acid metabolism[J]. Nature Communications,2019,10(1):4971. doi: 10.1038/s41467-019-12896-x [9] 刘赛文, 罗斌, 陈佳煜. 黑茶抗癌作用的研究进展[J]. 广东化工,2019,46(13):81−82. [LIU Saiwen, LUO Bin, CHEN Jiayi. Research progress of dark tea anticancer effects[J]. Guangdong Chemical Industry,2019,46(13):81−82. doi: 10.3969/j.issn.1007-1865.2019.13.038LIU Saiwen, LUO Bin, CHEN Jiayi. Research progress of Dark tea anticancer effects[J]. Guangdong Chemical Industry, 2019, 46(13): 81-82. doi: 10.3969/j.issn.1007-1865.2019.13.038 [10] 李怡. 柑橘果皮醇提物不同极性部位抗氧化、抗炎活性研究[D]. 重庆: 西南大学, 2015LI Yi. In vitro antioxidant and anti-inflammatory eddects of different polar fractions of ethanol ectraction from Citrus fruits peel[D]. Chongqing: Xinan University, 2015. [11] HONG X, LI X C, REN Z X, et al. Antioxidant and cytoprotective effects of Tibetan tea and its phenolic componets[J]. Molecules,2018,23(2):179. doi: 10.3390/molecules23020179 [12] 朱柏雨, 夏陈, 罗棵濒, 等. 四川黑茶活性成分、抗氧化能力及品质评价[J]. 食品与机械,2021,37(8):24−32. [ZHU Baiyu, XIA Chen, LUO Kebin, et al. Active components, antioxidant capacity and quality evaluation of Sichuan dark tea[J]. Food & Machinery,2021,37(8):24−32. doi: 10.13652/j.issn.1003-5788.2021.08.004ZHU Baiyu, XIA Chen, LUO Kebin, et al. Active components, antioxidant capacity and quality evaluation of Sichuan dark tea[J]. Food & Machinery, 2021, 37(8): 24-32. doi: 10.13652/j.issn.1003-5788.2021.08.004 [13] 夏陈, 罗棵濒, 向卓亚, 等. 雅安藏茶水提醇沉后各组分的物质含量、抗氧化和α-葡萄糖苷酶抑制活性对比分析[J]. 新宝登录入口(中国)有限公司,2022,43(21):69−74. [XIA Chen, LUO Kebin, XIANG Zhuoya, et al. Comparative analysis of substance content, antioxidant and α-glucosidase inhibitory activity of each component of Tibetan tea after water extraction and alcohol precipitation[J]. Science and Technology of Food Industry,2022,43(21):69−74.XIA Chen, LUO Kebin, XIANG Zhuoya, et al. Comparative analysis of substance content, antioxidant and α-glucosidase inhibitory activity of each component of Tibetan tea after water extraction and alcohol precipitation[J]. Science and Technology of Food Industry, 2022, 43(21): 69-74. . [14] DONG X, HUANG Y, WANG Y, et al. Anti-inflammatory and antioxidant jasmonates and flavonoids from lychee seeds[J]. Journal of Functional Foods,2019,54:74−80. doi: 10.1016/j.jff.2018.12.040 [15] DE SOUZA D R, WILLEMS J L, LOW N H. Phenolic composition and antioxidant activities of saskatoon berry fruit and pomace[J]. Food Chemistry,2019,290(30):168−177. [16] 沈刚. 乌骨鸡金属螯合肽的分离纯化及其金属螯合、抗氧化活性研究[D]. 南昌: 南昌大学, 2020SHEN Gang. Study on the isolation and purificant of mental chelating peptides from black-bone silky fowl and its metal chelating and antioxidant activities[D]. Nanchang: Nanchang University, 2020. [17] 徐一鸣, 郭秀兰, 李秋霞, 等. 汉源花椒总黄酮提取物的抗氧化及抗HeLa肿瘤细胞增殖活性研究[J]. 新宝登录入口(中国)有限公司,2020,4(13):296−301, 314. [XU Yiming, GUO Xiulan, LI Qiuxia, et al. The study of anti-oxidative and anti-proliferative activities of total flavonoids extract from Hanyuan Zanthoxylum bungeanum[J]. Science and Technology of Food Industry,2020,4(13):296−301, 314. doi: 10.13386/j.issn1002-0306.2020.13.047XU Yiming, GUO Xiulan, LI Qiuxia, et al. The study of anti-oxidative and anti-proliferative activities of total flavonoids extract from Hanyuan Zanthoxylum bungeanum[J]. Science and Technology of Food Industry, 2020, 4(13): 296-301, 314. doi: 10.13386/j.issn1002-0306.2020.13.047 [18] HUANG Q F, CHEN S H, CHEN H, et al. Studies on the bioactivity of aqueous extract of pu-erh tea and its fractions: In vitro antioxidant activity and α-glycosidase inhibitory property, and their effect on postprandial hyperglycemia in diabetic mice[J]. Food & Chemical Toxicology,2013,53:75−83. [19] 叶琼仙, 刘静, 苗爱清, 等. 白叶单枞黑茶抗氧化及体外降血糖活性研究[J]. 新宝登录入口(中国)有限公司,2014,35(16):153−157. [YE Qiongxian, LIU Jing, MIAO Aiqing, et al. Study on antioxidant and in vitro hypoglycemis activities of dark tea prepared from Camallia sinensis var. Baiye Dancong[J]. Science and Technology of Food Industry,2014,35(16):153−157. doi: 10.13386/j.issn1002-0306.2014.16.026YE Qiongxian, LIU Jing, MIAO Aiqing, et al. Study on antioxidant and in vitro hypoglycemis activities of dark tea prepared from Camallia sinensis var. Baiye Dancong[J]. Science and Technology of Food Industry, 2014, 35(16): 153-157. doi: 10.13386/j.issn1002-0306.2014.16.026 [20] LÜ H P, ZHANG Y, SHI J, et al. Phytochemical profiles and antioxidant activities of Chinese dark teas obtained by different processing technologies[J]. Food Research International,2016,100(3):486−493. [21] BAI J, ZHANG Y, TANG C, et al. Gallic acid: Pharmacological activities and molecular mechanisms involved in inflammation-related diseases[J]. Biomedicine & Pharmacotherapy,2021,133:110985. [22] ZHENG Q, LI W, ZHANG H, et al. Optimizing synchronous extraction and antioxidant activity evaluation of polyphenols and polysaccharides from Ya'an Tibetan tea (Camellia sinensis)[J]. Food Science and Nutrition,2020,8:489−499. doi: 10.1002/fsn3.1331 [23] 刘娜, 徐亚文, 韩利艳, 等. 普洱熟茶不同溶剂萃取层中儿茶素及黄酮醇类化合物差异的研究[J]. 食品安全质量检测学报,2022,13(6):1718−1725. [LIU Na, XU Yawen, HAN LIyan, et al. Study on catechins and flavonols materials different solvent extracts of Pu-erh ripned tea[J]. Journal of Food Safety & Quality,2022,13(6):1718−1725. doi: 10.3969/j.issn.2095-0381.2022.6.spaqzljcjs202206003LIU Na, XU Yawen, HAN LIyan, et al. Study on catechins and flavonols materials different solvent extracts of Pu-erh ripned tea[J]. Journal of Food Safety & Quality, 2022, 13(6): 1718-1725. doi: 10.3969/j.issn.2095-0381.2022.6.spaqzljcjs202206003 [24] MANHIVI V E, SULTANBAWA Y, SIVAKUMAR D. Enhancement of the phytonutrient content of a gluten-free soup using a composite of vegetables[J]. International Journal of Food Properties,2020,23(1):1051−1065. doi: 10.1080/10942912.2020.1778028 [25] 高玉萍, 唐德松, 龚淑英. 茶提取物抗氧化活性与茶多酚、儿茶素关系探究[J]. 中国食品学报,2013,13(6):40−47. [GAO Yuping, TANG Desong, GONG Shuying. The research of the relationship between antioxidation of tea extractive and tes polyphenols as well as catechins[J]. Journal of Chinese Institute of Food Science and Technology,2013,13(6):40−47. doi: 10.16429/j.1009-7848.2013.06.013GAO Yuping, TANG Desong, GONG Shuying. The Research of the relationship between antioxidation of tea extractive and tes polyphenols as well as catechins[J]. Journal of Chinese Institute of Food Science and Technology, 2013, 13(6): 40-47. doi: 10.16429/j.1009-7848.2013.06.013 [26] 马慧, 茹鑫, 王津, 等. 4种茶叶水提物及茶多酚的体外抗氧化性能研究[J]. 食品研究与开发,2019,40(8):65−70. [MA Hui, RU Xin, WANG Jin, et al. Study on the antioxidant capacity of four tea water extracts and tes polyphenols in vitro[J]. Food Research and Development,2019,40(8):65−70. doi: 10.3969/j.issn.1005-6521.2019.08.011MA Hui, RU Xin, WANG Jin, et al. Study on the antioxidant capacity of four tea water extracts and tes polyphenols in vitro[J]. Food Research and Development, 2019, 40(8): 65-70. doi: 10.3969/j.issn.1005-6521.2019.08.011 [27] LÜ H P, ZHU Y, TAN J F, et al. Bioactive compounds from Pu-erh tea with therapy for hyperlipidaemia[J]. Journal of Functional Foods,2015,19:194−203. doi: 10.1016/j.jff.2015.09.047 [28] LIANG H, LIANG Y, DONG J, et al. Decaffeination of fresh green tea leaf (Camellia sinensis) by hot water treatment[J]. Food Chemistry,2007,101(4):1451−1456. doi: 10.1016/j.foodchem.2006.03.054 [29] WANG Y, SHAO S, PING X, et al. Fermentation process enhanced production and bioactivities of oolong tea polysaccharides[J]. Food Research International,2012,46(1):158−166. doi: 10.1016/j.foodres.2011.11.027 [30] ZHOU D D, SAIMAITI A, LUO M, et al. Fermentation with tea residues enhances antioxidant activities and polyphenol contents in Kombucha beverages[J]. Antioxidants (Basel),2022,11(1):155. doi: 10.3390/antiox11010155 [31] SHARIFI-RAD M, PEZZANI R, RADAELLI M, et al. Preclinical pharmacological activities of Epigallocatechin-3-gallate in signaling pathways: An update on cancer[J]. Molecules,2020,25(3):467. doi: 10.3390/molecules25030467 [32] JIANG Y, PEI J, ZHENG Y, et al. Gallic acid: A potential anti-cancer agent[J]. Chinese Journal of Integrative Medicine,2022,28(7):661−671. doi: 10.1007/s11655-021-3345-2 -