Isolation and Identification of Lactiplantibacillus plantarum ST3.5 and Its Inhibitory Effect on Mold
-
摘要: 乳酸菌因具有拮抗霉菌等有害微生物的潜力,有望成为下一代安全、稳定的生物抗菌剂。本研究筛选获得了一株抑制霉菌活性较好的菌株ST3.5,基于16S rRNA测序鉴定为植物乳杆菌,并对其耐酸耐胆盐、抑制病原菌、耐药等特性进行分析。进一步对植物乳杆菌ST3.5的无细胞上清液进行酸处理、热处理及酶处理,分析其中主要的抑霉菌物质,通过高效液相色谱(HPLC)测定上清液中有机酸含量,扫描电镜(SEM)观察其对霉菌菌丝的破坏情况,并以玉米粒为实际样本进行生物防治试验。结果表明,植物乳杆菌ST3.5具有良好的耐酸特性,耐胆盐能力较弱,对庆大霉素、卡那霉素等抗生素具有耐药性,对氨苄西林、氯霉素等抗生素敏感,可以抑制致病菌的生长。有机酸分析发现植物乳杆菌ST3.5无细胞上清液中乳酸含量最高(22.02±0.23)g/L,其次是柠檬酸(4.99±0.04)g/L和乙酸(3.67±0.06)g/L。SEM结果显示上清液对霉菌菌丝有破坏作用。此外,生物防治实验证实了植物乳杆菌ST3.5无细胞上清液能够抑制玉米表面霉菌的生长。综上所述,植物乳杆菌ST3.5能够抑制霉菌生长,可用于开发生物防治制剂,以最大限度地减少霉菌污染并保障食品安全。Abstract: Lactic acid bacteria (LAB) has the potential to antagonize harmful microorganisms such as molds, which is expected to be safe and stable biological antimicrobial agents of the next generation. In present study, a strain ST3.5 with inhibiting mold activity was screened and obtained, which was identified as Lactiplantibacillus plantarum (L. plantarum) based on 16S rRNA sequencing. And its characteristics of acid resistance, bile salt resistance, inhibition of pathogenic bacteria, and drug resistance were analyzed. Furtherly, the cell-free supernatant (CFS) of L. plantarum ST3.5 was treated with acid, heat and enzyme, which the main antifungal substances were analyzed. The content of organic acids in supernatant was analyzed by high performance liquid chromatography (HPLC) and the destruction of mold mycelium was observed by scanning electron microscope (SEM). Meanwhile, the biological control experiment was carried out with corn kernels as an actual sample. The results showed that L. plantarum ST3.5 had good acid resistance and weak bile salt resistance. The strain was resistant to antibiotics (e.g., gentamicin and kanamycin) and sensitive to antibiotics (e.g., ampicillin and chloramphenicol), which could inhibit the growth of pathogenic bacteria. Analysis of organic acid found that the content of lactic acid in the CFS was the highest (22.02±0.23) g/L, followed by citric acid (4.99±0.04) g/L and acetic acid (3.67±0.06) g/L. The SEM results demonstrated the CFS could damage mold hyphae. Additionally, the biocontrol experiment confirmed that the CFS of L. plantarum ST3.5 could inhibit the mold residing growth of the corn surface. In conclusion, L. plantarum ST3.5 can inhibit the growth of mold, which can be used to develop biological control agents to minimize mold pollution and ensure food safety.
-
Key words:
- lactic acid bacteria /
- Lactiplantibacillus plantarum /
- screening /
- identification /
- mold inhibitory /
- corn kernels
-
表 1 菌株对产黄青霉和杂色曲霉的抑制效果
Table 1. Inhibitory effect of strain on P. chrysogenum and A. versicolor
序号 菌种编号 抑制产
黄青霉抑制杂
色曲霉序号 菌种编号 抑制产
黄青霉抑制杂
色曲霉1 H1.1 ++ ++ 18 S4.2 +++ ++ 2 H1.2 (−) ++ 19 ST1.1 ++ +++ 3 H1.3 ++ + 20 ST1.2 +++ ++ 4 H1.4 (−) ++ 21 ST1.3 ++ +++ 5 H2.2 ++ + 22 ST2.1 ++ +++ 6 H3 ++ ++ 23 ST2.2 +++ ++ 7 H6 + ++ 24 ST2.3 (−) +++ 8 L2.2 ++ +++ 25 ST2.4 +++ ++ 9 L2.5.1 +++ ++ 26 ST3.4 (−) +++ 10 L4.1 +++ ++ 27 ST3.5 +++ +++ 11 L4.3 +++ − 28 ST4.3 (−) + 12 L4.5 +++ ++ 29 ST4.4 +++ ++ 13 L5.1 ++ (−) 30 ST4.5 +++ ++ 14 L5.2 ++ (−) 31 ST4.6 (−) + 15 L5.3 − ++ 32 ST5.3 (−) (−) 16 L5.5 (−) ++ 33 ST5.4 ++ +++ 17 L6 (−) +++ 34 ST5.5 + ++ 注:“−”,没有抑制作用;“(−)”,微弱抑制,每个乳酸菌线周围有占总平板面积0.1%~10%的抑菌圈;“+”,每个乳酸菌线周围有占总平板面积10%~30%的抑菌圈;“++”,每个乳酸菌线周围有占总平板面积30%~50%的抑菌圈;“+++”,每个乳酸菌线周围有占总平板面积50%以上的抑菌圈。 表 2 L. plantarum ST3.5的耐酸耐胆盐效果
Table 2. Acid and bile salt tolerance of L. plantarum ST3.5
酸耐受性 活菌数(log CFU/mL) 0 h 1 h 3 h pH5 9.16±0.11bB 9.46±0.04bA 9.83±0.21aA pH4 8.94±0.02bB 9.63±0.33aA 9.48±0.02aAB pH3 8.98±0.14bB 9.31±0.02aA 9.33±0.21aB pH2 9.61±0.05aA 7.26±0.24bB 4.48±0.00cC 胆盐耐受性 活菌数(log CFU/mL) 0 h 1 h 3 h 0.1% 9.10±0.04aA 9.11±0.33aA 9.31±0.05aA 0.2% 6.78±0.16aB 6.78±0.79aB 6.09±0.98aB 0.3% 5.94±0.34aC 5.51±0.20bC ND 注:a、b、c表示相同的酸度或胆盐浓度条件下不同的处理时间的差异显著性(P<0.05);A、B、C表示相同的时间下不同的酸度或胆盐浓度的差异显著性(P<0.05)。 表 3 L. plantarum ST3.5对致病菌的抑制效果
Table 3. Inhibitory effect of L. plantarum ST3.5 on pathogenic bacterias
菌株 抑菌圈(mm) 大肠杆菌 20.00±0.00bc 金黄色葡萄球菌 25.00±0.00a 铜绿假单胞菌 18.33±0.58c 单细胞增生李斯特菌 21.00±1.73b 注:a、b、c表示对不同致病菌的抑菌圈大小的差异显著性(P<0.05)。 表 4 L. plantarum ST3.5对不同抗生素敏感性
Table 4. Sensitivity of L. plantarum ST3.5 to different antibiotics
分类 抗生素 敏感性 分类 抗生素 敏感性 氨基糖苷类 阿米卡星 S 青霉素类 青霉素 R 庆大霉素 R 苯唑西林 R 卡那霉素 R 氨苄西林 S 新霉素 R 羧苄西林 S 链霉素 R 哌拉西林 S 大环内酯类 麦迪霉素 S 喹诺酮类 环丙沙星 R 红霉素 S 诺氟沙星 R 头孢菌素类 头孢呋辛 S 氧氟沙星 I 头孢他啶 S 其他 万古霉素 R 头孢唑林 S 多粘菌素B R 头孢哌酮 I 呋喃唑酮 I 头孢拉定 S 氯霉素 S 头孢曲松 S 利福平 S 头孢氨苄 S 复方新诺明 R 头孢噻肟 R 克林霉素 R 四环素类 多西环素 S 四环素 R 米诺环素 R 注:S:敏感;I:中度敏感;R:耐药。 -
[1] BANGAR S P, SHARMA N, KUMAR M, et al. Recent developments in applications of lactic acid bacteria against mycotoxin production and fungal contamination[J]. Food Bioscience,2021,44:101444. doi: 10.1016/j.fbio.2021.101444 [2] NEME K, MOHAMMED A. Mycotoxin occurrence in grains and the role of postharvest management as a mitigation strategies. A review[J]. Food Control,2017,78:412−425. doi: 10.1016/j.foodcont.2017.03.012 [3] LITING W, HAO W, GUOZHENG Q, et al. Chitosan disrupts Penicillium expansum and controls postharvest blue mold of jujube fruit[J]. Food Control,2014,41:56−62. doi: 10.1016/j.foodcont.2013.12.028 [4] TONGFEI L, YING W, YAYA F, et al. The response of growth and patulin production of postharvest pathogen Penicillium expansum to exogenous potassium phosphite treatment[J]. International Journal of Food Microbiology,2017,244:1−10. doi: 10.1016/j.ijfoodmicro.2016.12.017 [5] ZHANG X M, FU M R. Inhibitory effect of chlorine dioxide (ClO2) fumigation on growth and patulin production and its mechanism in Penicillum expansum[J]. LWT-Food Science and Technology,2018,96:335−343. doi: 10.1016/j.lwt.2018.05.051 [6] HE C, ZHANG Z, LI B, et al. Effect of natamycin on Botrytis cinerea and Penicillium expansum—Postharvest pathogens of grape berries and jujube fruit[J]. Postharvest Biology and Technology,2019,151:134−141. doi: 10.1016/j.postharvbio.2019.02.009 [7] VANESSA R D S, VLADIMIR P, KEITH W, et al. A comparative study on the inactivation of Penicillium expansum spores on apple using light emitting diodes at 277 nm and a low-pressure mercury lamp at 253.7 nm[J]. Food Control,2020,110:107039. doi: 10.1016/j.foodcont.2019.107039 [8] NICOLETA A M, ANA Y R, ANCA I N, et al. Influence of processing parameters on the pulsed-light inactivation of Penicillium expansum in apple juice[J]. Food Control,2014,41:27−31. doi: 10.1016/j.foodcont.2013.12.023 [9] 刘欢, 史懿乐, 雷化雨, 等. 食源性病原菌新型天然抑菌剂的开发研究进展[J]. 食品科技,2022,47(7):243−249. [LIU H, SHI Y L, LEI H Y, et al. Development of novel natural bacteriostatic agents for foodborne pathogenic bacteria[J]. Food Science and Technology,2022,47(7):243−249. doi: 10.3969/j.issn.1005-9989.2022.7.spkj202207036LIU H, SHI Y L, LEI H Y, et al. Development of novel natural bacteriostatic agents for foodborne pathogenic bacteria [J]. Food Science and Technology, 2022, 47(7): 243-249. doi: 10.3969/j.issn.1005-9989.2022.7.spkj202207036 [10] 孙悦. 抗耐药性埃希氏大肠杆菌乳酸菌的筛选及抑菌机制研究[D]. 锦州: 渤海大学, 2020SUN Y. Screening of anti-drug resistant Escherichia coli lactic acid bacteria and its antibacterial mechanism[D]. Jinzhou: Bohai University, 2020. [11] YANG E J, CHANG H C. Purification of a new antifungal compound produced by Lactobacillus plantarum AF1 isolated from kimchi[J]. International Journal of Food Microbiology,2010,139(1−2):56−63. doi: 10.1016/j.ijfoodmicro.2010.02.012 [12] SVANSTROM A, BOVERI S, BOSTROM E, et al. The lactic acid bacteria metabolite phenyllactic acid inhibits both radial growth and sporulation of filamentous fungi[J]. BMC Research Notes,2013,6:464. doi: 10.1186/1756-0500-6-464 [13] LE LAY C, COTON E, LE BLAY G, et al. Identification and quantification of antifungal compounds produced by lactic acid bacteria and propionibacteria[J]. International Journal of Food Microbiology,2016,239:79−85. doi: 10.1016/j.ijfoodmicro.2016.06.020 [14] AL-ROUSAN W M, OLAIMAT A N, OSAILI T M, et al. Use of acetic and citric acids to inhibit Escherichia coli O157: H7, Salmonella typhimurium and Staphylococcus aureus in tabbouleh salad[J]. Food Microbiology,2018,73:61−66. doi: 10.1016/j.fm.2018.01.001 [15] 苟拥军, 严林, 王煊锴, 等. 苹果汁发酵用乳酸菌的分离 筛选及增殖条件优化[J]. 农产品加工,2022(13):13−20. [GOU Y J, YAN L, WANG X K, et al. Isolation, screening and optimization of grown conditions of lactic acid bacteria for apple juice fermentation[J]. Farm Products Processing,2022(13):13−20.GOU Y J, YAN L, WANG X K, et al. Isolation, screening and optimization of grown conditions of lactic acid bacteria for apple juice fermentation [J]. Farm Products Processing, 2022(13): 13-20. [16] 李院. 酱菜中抑霉菌的乳酸菌分离、鉴定及抑菌活性物质分析[D]. 杨凌: 西北农林科技大学, 2015LI, Y. The isolation, identification and analysis of antimicrobial component of lactic acid bacteria inhibiting fungi in pickles[D]. Yangling: Northwest A&F University, 2015. [17] 布坎南, 吉本斯. 伯杰细菌鉴定手册[M]. 北京: 科学出版社, 1984: 797−826BUDANAN R E, GIBBONR N E. Berger handbook of bacterial identification[M]. Beijing: Science Press, 1984: 797−826. [18] YAO D, WANG X, MA L, et al. Impact of Weissella cibaria BYL4.2 and its supernatants on Penicillium chrysogenum metabolism[J]. Frontiers in Microbiology,2022,13:983613. doi: 10.3389/fmicb.2022.983613 [19] CHEN H, JU H, WANG Y, et al. Antifungal activity and mode of action of lactic acid bacteria isolated from kefir against Penicillium expansum[J]. Food Control,2021,130:108274. doi: 10.1016/j.foodcont.2021.108274 [20] SOMASHEKARAIAH R, MOTTAWEA W, GUNDURAJ A, et al. Probiotic and antifungal attributes of Levilactobacillus brevis MYSN105, isolated from an indian traditional fermented food pozha[J]. Frontiers in Microbiology,2021,12:696267. doi: 10.3389/fmicb.2021.696267 [21] VELEZ P, ESPINOSA-ASUAR L, FIGUEROA M, et al. Nutrient dependent cross-kingdom interactions: Fungi and bacteria from an oligotrophic desert oasis[J]. Frontiers in Microbiology,2018,9:1755. doi: 10.3389/fmicb.2018.01755 [22] 王巧丽. 猪源罗伊氏乳杆菌的筛选、特性研究及应用[D]. 兰州: 甘肃农业大学, 2013WANG Q L, Screening, characteristics and application of Lactobacillus reuteri from pigs[D]. Lanzhou: Gansu Agricultural University, 2013. [23] 苏布敦格日乐. 猪源乳酸菌的分离及其对猪瘟疫苗免疫协同作用的研究[D]. 呼和浩特: 内蒙古农业大学, 2008SU B D G R L. Identification and characterisation of lactic acid bacterial isolates and their effects on immune synergism with classical swine fever vaccine[D]. Hohhot: Inner Mongolia Agricultural University, 2008. [24] 肖俊, 张桂芳, 李艳芳, 等. 草鱼肠道乳酸菌的分离鉴定及适用性能评价[J]. 湖南农业科学,2022(4):65−69. [XIAO J, ZHANG G F, LI Y F, et al. Applicability, identification and isolation of lactic acid bacteria from grass carp intestine[J]. Hunan Agricultural Sciences,2022(4):65−69. doi: 10.16498/j.cnki.hnnykx.2022.004.018XIAO J, ZHANG G F, LI Y F, et al. Applicability, identification and isolation of lactic acid bacteria from grass carp intestine [J]. Hunan Agricultural Sciences, 2022(4): 65-69. doi: 10.16498/j.cnki.hnnykx.2022.004.018 [25] 郑越, 段涛, 宋丹, 等. 六株植物乳杆菌的益生特性研究[J]. 食品与发酵工业,2022,48(10):119−125. [ZHENG Y, DUAN T, SONG D, et al. Probiotic properties of six Lactobacillus plantarum strains[J]. Food and Fermentation Industries,2022,48(10):119−125. doi: 10.13995/j.cnki.11-1802/ts.029063ZHENG Y, DUAN T, SONG D, et al. Probiotic properties of six Lactobacillus plantarum strains[J]. Food and Fermentation Industries, 2022, 48( 10): 119-125. doi: 10.13995/j.cnki.11-1802/ts.029063 [26] HAI J Y, YONG F C, HUI J Y, et al. Screening for Lactobacillus plantarum with potential inhibitory activity against enteric pathogens[J]. Annals of Microbiology,2015,65(3):1257−1265. doi: 10.1007/s13213-014-0963-3 [27] FRAQUEZA M J. Antibiotic resistance of lactic acid bacteria isolated from dry-fermented sausages[J]. International Journal of Food Microbiology,2015,212:76−88. doi: 10.1016/j.ijfoodmicro.2015.04.035 [28] 何杉杉, 王晓蕊, 彭禹熙, 等. 雪莲菌中乳酸菌的益生特性[J]. 食品科学,2022,43(2):210−216. [HE S S, WANG X R, PENG Y X, et al. Probiotic properties of lactic acid bacteria isolated from Tibetan kefir grain[J]. Food Science,2022,43(2):210−216. doi: 10.7506/spkx1002-6630-20201224-282HE S S, WANG X R, PENG Y X, et al. Probiotic properties of lactic acid bacteria isolated from Tibetan kefir grain[J]. Food Science, 2022, 43(2): 210-216. doi: 10.7506/spkx1002-6630-20201224-282 [29] 王楠, 尹纪元, 王英英, 等. 草鱼源乳酸菌的分离鉴定及其生物学特性研究[J]. 南方水产科学,2021,17(6):74−84. [WANG N, YIN J Y, WANG Y Y, et al. Isolation, identification and biological characteristics of Lactobacillus from grass carp[J]. South China Fisheries Science,2021,17(6):74−84. doi: 10.12131/20210039WANG N, YIN J Y, WANG Y Y, et al. Isolation, identification and biological characteristics of lactobacillus from grass carp [J]. South China Fisheries Science, 2021, 17(6): 74-84. doi: 10.12131/20210039 [30] WERNER G. Current trends of emergence and spread of vancomycin-resistant enterococci[M]//IntechOpen, 2012. [31] DANIELSEN M, WIND A. Susceptibility of Lactobacillus spp. to antimicrobial agents[J]. International Journal of Food Microbiology,2003,82(1):1−11. doi: 10.1016/S0168-1605(02)00254-4 [32] 冯金晓, 李明珠, 冯倩. 青岛市售酸奶中乳酸菌的分离鉴定及耐药性研究[J]. 现代食品,2018(5):106−109. [FENG J X, LI M Z, FENG Q. Identification and antibiotic resistance of lactic acid bacteria isolated from yogurt in Qingdao[J]. Modern Food,2018(5):106−109. doi: 10.16736/j.cnki.cn41-1434/ts.2018.05.034FENG J X, LI M Z, FENG Q. Identification and antibiotic resistance of lactic acid bacteria isolated from yogurt in Qingdao [J]. Modern Food, 2018(5): 106-109. doi: 10.16736/j.cnki.cn41-1434/ts.2018.05.034 [33] 党乔, 孔令聪, 刘洁, 等. 泡菜发酵乳酸菌的分离鉴定及耐药性分析[J]. 食品科学,2019,40(20):166−170. [DANG Q, KONG L C, LIU J, et al. Isolation, identification and antimicrobial resistance analysis of lactic acid bacteria from kimchi[J]. Food Science,2019,40(20):166−170. doi: 10.7506/spkx1002-6630-20181109-093DANG Q, KONG L C, LIU J, et al. Isolation, identification and antimicrobial resistance analysis of lactic acid bacteria from kimchi [J]. Food Science, 2019, 40(20): 166-170. doi: 10.7506/spkx1002-6630-20181109-093 [34] 王庆宇, 李啸, 宋宜兵, 等. 抑制馒头中腐败霉菌活性乳酸菌的筛选及其应用[J]. 中国酿造,2021,40(10):139−143. [WANG Q Y, LI X, SONG Y B, et al. Screening and application of lactic acid bacteria inhibiting spoilage mold activity in Mantou[J]. China Brewing,2021,40(10):139−143. doi: 10.11882/j.issn.0254-5071.2021.10.023WANG Q Y, LI X, SONG Y B, et al. Screening and application of lactic acid bacteria inhibiting spoilage mold activity in Mantou [J]. China Brewing, 2021, 40(10): 139-143. doi: 10.11882/j.issn.0254-5071.2021.10.023 [35] GREIFOVA G, MAJEKOVA H, GREIF G, et al. Analysis of antimicrobial and immunomodulatory substances produced by heterofermentative Lactobacillus reuteri[J]. Folia Microbiologica,2017,62(6):515−524. doi: 10.1007/s12223-017-0524-9 [36] 孙艳, 冯晓微, 刘佳玮, 等. 健康奶牛生殖道乳酸菌的分离鉴定及其抑菌活性研究[J]. 中国畜牧兽医,2022,49(5):1852−1859. [SUN Y, FENG X W, LIU J W, et al. Isolation, identification and antibacterial activity of lactic acid bacteria from reproductive tract of healthy dairy cows[J]. China Animal Husbandry & Veterinary Medicine,2022,49(5):1852−1859. doi: 10.16431/j.cnki.1671-7236.2022.05.025SUN Y, FENG X W, LIU J W, et al. Isolation, identification and antibacterial activity of lactic acid bacteria from reproductive tract of healthy dairy cows [J]. China Animal Husbandry & Veterinary Medicine, 2022, 49(5): 1852-1859. doi: 10.16431/j.cnki.1671-7236.2022.05.025 [37] NEHAL F, SAHNOUN M, SMAOUI S, et al. Characterization, high production and antimicrobial activity of exopolysaccharides from Lactococcus lactis F-mou[J]. Microbial Pathogenesis,2019,132:10−19. doi: 10.1016/j.micpath.2019.04.018 [38] 赵雅茹, 郭刚, 陈雷, 等. 抑霉乳酸菌的筛分及其抑菌特性研究[J]. 饲料研究,2021,44(2):62−66. [ZHAO Y R, GUO G, CHEN L, et al. Study on the screening and bacteriostatic characteristics of mildew-inhibiting Lactobacillus[J]. Feed Research,2021,44(2):62−66. doi: 10.13557/j.cnki.issn1002-2813.2021.02.015ZHAO Y R, GUO G, CHEN L, et al. Study on the screening and bacteriostatic characteristics of mildew-inhibiting Lactobacillus [J]. Feed Research, 2021, 44(2): 62-66. doi: 10.13557/j.cnki.issn1002-2813.2021.02.015 [39] KULEY E, ÖZYURT G, ÖZOGUL I, et al. The role of selected lactic acid bacteria on organic acid accumulation during wet and spray-dried fish-based silages. Contributions to the winning combination of microbial food safety and environmental sustainability[J]. Microorganisms (Basel),2020,8(2):172. doi: 10.3390/microorganisms8020172 [40] 丁宁, 陆兆新, 别小妹, 等. 谷物中具有抑制霉菌活性乳酸菌的分离筛选及鉴定[J]. 南京农业大学学报,2021,44(6):1187−1196. [DING N, LU Z X, BIE X M, et al. Isolation and identification of antifungal lactic acid bacteria from different grains[J]. Journal of Nanjing Agricultural University,2021,44(6):1187−1196. doi: 10.7685/jnau.202102003DING N, LU Z X, BIE X M, et al. Isolation and identification of antifungal lactic acid bacteria from different grains [J]. Journal of Nanjing Agricultural University, 2021, 44(6): 1187-1196. doi: 10.7685/jnau.202102003 [41] 赵雅茹, 许庆方, 高文俊, 等. 抑霉乳酸菌脱毒特性及青贮应用的研究[J]. 生物技术通报,2021,37(9):95−105. [ZHAO Y R, XU F Q, GAO W J, et al. Study on the detoxification characteristics of antifungal lactic acid bacteria and the application of silage[J]. Biotechnology Bulletin,2021,37(9):95−105. doi: 10.13560/j.cnki.biotech.bull.1985.2021-0897ZHAO Y R, XU F Q, GAO W J, et al. Study on the detoxification characteristics of antifungal lactic acid bacteria and the application of silage [J]. Biotechnology Bulletin, 2021, 37(9): 95-105. doi: 10.13560/j.cnki.biotech.bull.1985.2021-0897 [42] 吕好新, 赵玲丽, 霍珊珊, 等. 肉桂-山苍子复合植物精油对发霉花生黑曲霉BQM菌的抑菌效果[J]. 中国食品学报,2021,21(12):222−229. [LÜ H X, ZHAO L L, HUO S S, et al. The antifungal effect of cinnamon-litsea cubeba compound essential oil on Aspergillus niger BQM of moldy peanuts[J]. Journal of Chinese Institute of Food Science and Technology,2021,21(12):222−229. doi: 10.16429/j.1009-7848.2021.12.024LÜ H X, ZHAO L L, HUO S S, et al. The antifungal effect of cinnamon-litsea cubeba compound essential oil on Aspergillus niger BQM of moldy peanuts [J]. Journal of Chinese Institute of Food Science and Technology, 2021, 21(12): 222-229. doi: 10.16429/j.1009-7848.2021.12.024 -