• 食品科学与工程领域高质量科技期刊分级目录第一方阵T1
  • Scopus
  • FSTA
  • 北大核心期刊
  • 中国核心学术期刊RCCSE
  • DOAJ
  • JST China
  • 中国精品科技期刊
  • 中国农业核心期刊
  • CA
  • WJCI
  • 中国科技核心期刊CSTPCD
  • 中国生物医学SinoMed
中国精品科技期刊2020 食品青年科学家峰会

植物乳杆菌ST3.5的分离鉴定及其对霉菌的抑制作用

王晓宇 吴梦娜 于巧如 马丽雪 姚笛 张丽媛

王晓宇,吴梦娜,于巧如,等. 植物乳杆菌ST3.5的分离鉴定及其对霉菌的抑制作用[J]. 新宝登录入口(中国)有限公司,2023,44(13):141−149. doi:  10.13386/j.issn1002-0306.2022080334
引用本文: 王晓宇,吴梦娜,于巧如,等. 植物乳杆菌ST3.5的分离鉴定及其对霉菌的抑制作用[J]. 新宝登录入口(中国)有限公司,2023,44(13):141−149. doi:  10.13386/j.issn1002-0306.2022080334
WANG Xiaoyu, WU Mengna, YU Qiaoru, et al. Isolation and Identification of Lactiplantibacillus plantarum ST3.5 and Its Inhibitory Effect on Mold[J]. Science and Technology of Food Industry, 2023, 44(13): 141−149. (in Chinese with English abstract). doi:  10.13386/j.issn1002-0306.2022080334
Citation: WANG Xiaoyu, WU Mengna, YU Qiaoru, et al. Isolation and Identification of Lactiplantibacillus plantarum ST3.5 and Its Inhibitory Effect on Mold[J]. Science and Technology of Food Industry, 2023, 44(13): 141−149. (in Chinese with English abstract). doi:  10.13386/j.issn1002-0306.2022080334

植物乳杆菌ST3.5的分离鉴定及其对霉菌的抑制作用

doi: 10.13386/j.issn1002-0306.2022080334
基金项目: 黑龙江省“百千万”工程科技重大专项目(2019ZXO6B02);中央支持地方高校改革发展资金优秀青年人才项目(2020YQ16);黑龙江省重点研发计划指导项目(GZ20210071)。
详细信息
    作者简介:

    王晓宇(1997−),女,硕士研究生,研究方向:食品科学,E-mail:1429961235@qq.com

    通讯作者:

    姚笛(1980−),女,博士,教授,研究方向:食品科学,E-mail:yd13845991700@163.com

    张丽媛(1981−),女,博士,教授,研究方向:食品安全与质量溯源,E-mail:350384726@qq.com

  • 中图分类号: TS201.3

Isolation and Identification of Lactiplantibacillus plantarum ST3.5 and Its Inhibitory Effect on Mold

  • 摘要: 乳酸菌因具有拮抗霉菌等有害微生物的潜力,有望成为下一代安全、稳定的生物抗菌剂。本研究筛选获得了一株抑制霉菌活性较好的菌株ST3.5,基于16S rRNA测序鉴定为植物乳杆菌,并对其耐酸耐胆盐、抑制病原菌、耐药等特性进行分析。进一步对植物乳杆菌ST3.5的无细胞上清液进行酸处理、热处理及酶处理,分析其中主要的抑霉菌物质,通过高效液相色谱(HPLC)测定上清液中有机酸含量,扫描电镜(SEM)观察其对霉菌菌丝的破坏情况,并以玉米粒为实际样本进行生物防治试验。结果表明,植物乳杆菌ST3.5具有良好的耐酸特性,耐胆盐能力较弱,对庆大霉素、卡那霉素等抗生素具有耐药性,对氨苄西林、氯霉素等抗生素敏感,可以抑制致病菌的生长。有机酸分析发现植物乳杆菌ST3.5无细胞上清液中乳酸含量最高(22.02±0.23)g/L,其次是柠檬酸(4.99±0.04)g/L和乙酸(3.67±0.06)g/L。SEM结果显示上清液对霉菌菌丝有破坏作用。此外,生物防治实验证实了植物乳杆菌ST3.5无细胞上清液能够抑制玉米表面霉菌的生长。综上所述,植物乳杆菌ST3.5能够抑制霉菌生长,可用于开发生物防治制剂,以最大限度地减少霉菌污染并保障食品安全。
  • 图  1  菌株ST3.5抑制产黄青霉和杂色曲霉效果图

    Figure  1.  Effect diagram of strain ST3.5 inhibiting P. chrysogenum and A. versicolor

    注:A:产黄青霉;B:ST3.5抑制产黄青霉;C:杂色曲霉;D:ST3.5抑制杂色曲霉。

    图  2  分离菌株 ST3.5 菌落形态

    Figure  2.  Colony morphology of isolated strain ST3.5

    图  3  分离菌株 ST3.5 镜检结果(1000×)

    Figure  3.  Results of microscopic examination of isolated strain ST3.5(1000×)

    图  4  菌株ST3.5的系统发育树

    Figure  4.  Phylogenetic tree of strain ST3.5

    图  5  L. plantarum ST3.5的生长曲线及发酵液pH变化曲线

    Figure  5.  Growth curve and pH change curve of fermentation broth of L. plantarum ST3.5

    注:不同小写字母表示不同时间pH的差异显著(P<0.05);不同大写字母表示不同时间OD600 nm值的差异显著(P<0.05)。

    图  6  不同处理的L. plantarum ST3.5-CFS对霉菌的抑制效果

    Figure  6.  Inhibitory effect of different treated L. plantarum ST3.5-CFS on mold

    注:*,#:P<0.05 ;**,##:P<0.01;***,###:P<0.001表示两菌抑菌效果与CFS组相比的显著性。

    图  7  L. plantarum ST3.5-CFS中的有机酸含量

    Figure  7.  Content of organic acids in L. plantarum ST3.5-CFS

    注:不同字母表示不同有机酸含量的差异显著(P<0.05)。

    图  8  霉菌菌丝扫描电镜图

    Figure  8.  Scanning electron microscope image of mold mycelium

    注:A:产黄青霉;B:杂色曲霉;a:对照组;b:CFS处理组;1:菌丝形态(标尺:30 μm);2:菌丝形态(标尺:5 μm);3:菌丝尖端(标尺:5 μm)。

    图  9  ST3.5-CFS处理前后的玉米粒对霉菌的抑制效果图

    Figure  9.  Inhibition effect of corn kernels treated with ST3.5-CFS on mold

    注:A、B是产黄青霉的对照组和处理组,C、D是杂色曲霉的对照组和处理组。

    表  1  菌株对产黄青霉和杂色曲霉的抑制效果

    Table  1.   Inhibitory effect of strain on P. chrysogenum and A. versicolor

    序号菌种编号抑制产
    黄青霉
    抑制杂
    色曲霉
    序号菌种编号抑制产
    黄青霉
    抑制杂
    色曲霉
    1H1.1++++18S4.2+++++
    2H1.2(−)++19ST1.1+++++
    3H1.3+++20ST1.2+++++
    4H1.4(−)++21ST1.3+++++
    5H2.2+++22ST2.1+++++
    6H3++++23ST2.2+++++
    7H6+++24ST2.3(−)+++
    8L2.2+++++25ST2.4+++++
    9L2.5.1+++++26ST3.4(−)+++
    10L4.1+++++27ST3.5++++++
    11L4.3+++28ST4.3(−)+
    12L4.5+++++29ST4.4+++++
    13L5.1++(−)30ST4.5+++++
    14L5.2++(−)31ST4.6(−)+
    15L5.3++32ST5.3(−)(−)
    16L5.5(−)++33ST5.4+++++
    17L6(−)+++34ST5.5+++
    注:“−”,没有抑制作用;“(−)”,微弱抑制,每个乳酸菌线周围有占总平板面积0.1%~10%的抑菌圈;“+”,每个乳酸菌线周围有占总平板面积10%~30%的抑菌圈;“++”,每个乳酸菌线周围有占总平板面积30%~50%的抑菌圈;“+++”,每个乳酸菌线周围有占总平板面积50%以上的抑菌圈。
    下载: 导出CSV

    表  2  L. plantarum ST3.5的耐酸耐胆盐效果

    Table  2.   Acid and bile salt tolerance of L. plantarum ST3.5

    酸耐受性活菌数(log CFU/mL)
    0 h1 h3 h
    pH59.16±0.11bB9.46±0.04bA9.83±0.21aA
    pH48.94±0.02bB9.63±0.33aA9.48±0.02aAB
    pH38.98±0.14bB9.31±0.02aA9.33±0.21aB
    pH29.61±0.05aA7.26±0.24bB4.48±0.00cC
    胆盐耐受性活菌数(log CFU/mL)
    0 h1 h3 h
    0.1%9.10±0.04aA9.11±0.33aA9.31±0.05aA
    0.2%6.78±0.16aB6.78±0.79aB6.09±0.98aB
    0.3%5.94±0.34aC5.51±0.20bCND
    注:a、b、c表示相同的酸度或胆盐浓度条件下不同的处理时间的差异显著性(P<0.05);A、B、C表示相同的时间下不同的酸度或胆盐浓度的差异显著性(P<0.05)。
    下载: 导出CSV

    表  3  L. plantarum ST3.5对致病菌的抑制效果

    Table  3.   Inhibitory effect of L. plantarum ST3.5 on pathogenic bacterias

    菌株抑菌圈(mm)
    大肠杆菌20.00±0.00bc
    金黄色葡萄球菌25.00±0.00a
    铜绿假单胞菌18.33±0.58c
    单细胞增生李斯特菌21.00±1.73b
    注:a、b、c表示对不同致病菌的抑菌圈大小的差异显著性(P<0.05)。
    下载: 导出CSV

    表  4  L. plantarum ST3.5对不同抗生素敏感性

    Table  4.   Sensitivity of L. plantarum ST3.5 to different antibiotics

    分类抗生素敏感性分类抗生素敏感性
    氨基糖苷类阿米卡星S青霉素类青霉素R
    庆大霉素R苯唑西林R
    卡那霉素R氨苄西林S
    新霉素R羧苄西林S
    链霉素R哌拉西林S
    大环内酯类麦迪霉素S喹诺酮类环丙沙星R
    红霉素S诺氟沙星R
    头孢菌素类头孢呋辛S氧氟沙星I
    头孢他啶S其他万古霉素R
    头孢唑林S多粘菌素BR
    头孢哌酮I呋喃唑酮I
    头孢拉定S氯霉素S
    头孢曲松S利福平S
    头孢氨苄S复方新诺明R
    头孢噻肟R克林霉素R
    四环素类多西环素S
    四环素R
    米诺环素R
    注:S:敏感;I:中度敏感;R:耐药。
    下载: 导出CSV
  • [1] BANGAR S P, SHARMA N, KUMAR M, et al. Recent developments in applications of lactic acid bacteria against mycotoxin production and fungal contamination[J]. Food Bioscience,2021,44:101444. doi:  10.1016/j.fbio.2021.101444
    [2] NEME K, MOHAMMED A. Mycotoxin occurrence in grains and the role of postharvest management as a mitigation strategies. A review[J]. Food Control,2017,78:412−425. doi:  10.1016/j.foodcont.2017.03.012
    [3] LITING W, HAO W, GUOZHENG Q, et al. Chitosan disrupts Penicillium expansum and controls postharvest blue mold of jujube fruit[J]. Food Control,2014,41:56−62. doi:  10.1016/j.foodcont.2013.12.028
    [4] TONGFEI L, YING W, YAYA F, et al. The response of growth and patulin production of postharvest pathogen Penicillium expansum to exogenous potassium phosphite treatment[J]. International Journal of Food Microbiology,2017,244:1−10. doi:  10.1016/j.ijfoodmicro.2016.12.017
    [5] ZHANG X M, FU M R. Inhibitory effect of chlorine dioxide (ClO2) fumigation on growth and patulin production and its mechanism in Penicillum expansum[J]. LWT-Food Science and Technology,2018,96:335−343. doi:  10.1016/j.lwt.2018.05.051
    [6] HE C, ZHANG Z, LI B, et al. Effect of natamycin on Botrytis cinerea and Penicillium expansum—Postharvest pathogens of grape berries and jujube fruit[J]. Postharvest Biology and Technology,2019,151:134−141. doi:  10.1016/j.postharvbio.2019.02.009
    [7] VANESSA R D S, VLADIMIR P, KEITH W, et al. A comparative study on the inactivation of Penicillium expansum spores on apple using light emitting diodes at 277 nm and a low-pressure mercury lamp at 253.7 nm[J]. Food Control,2020,110:107039. doi:  10.1016/j.foodcont.2019.107039
    [8] NICOLETA A M, ANA Y R, ANCA I N, et al. Influence of processing parameters on the pulsed-light inactivation of Penicillium expansum in apple juice[J]. Food Control,2014,41:27−31. doi:  10.1016/j.foodcont.2013.12.023
    [9] 刘欢, 史懿乐, 雷化雨, 等. 食源性病原菌新型天然抑菌剂的开发研究进展[J]. 食品科技,2022,47(7):243−249. [LIU H, SHI Y L, LEI H Y, et al. Development of novel natural bacteriostatic agents for foodborne pathogenic bacteria[J]. Food Science and Technology,2022,47(7):243−249. doi:  10.3969/j.issn.1005-9989.2022.7.spkj202207036

    LIU H, SHI Y L, LEI H Y, et al. Development of novel natural bacteriostatic agents for foodborne pathogenic bacteria [J]. Food Science and Technology, 2022, 47(7): 243-249. doi:  10.3969/j.issn.1005-9989.2022.7.spkj202207036
    [10] 孙悦. 抗耐药性埃希氏大肠杆菌乳酸菌的筛选及抑菌机制研究[D]. 锦州: 渤海大学, 2020

    SUN Y. Screening of anti-drug resistant Escherichia coli lactic acid bacteria and its antibacterial mechanism[D]. Jinzhou: Bohai University, 2020.
    [11] YANG E J, CHANG H C. Purification of a new antifungal compound produced by Lactobacillus plantarum AF1 isolated from kimchi[J]. International Journal of Food Microbiology,2010,139(1−2):56−63. doi:  10.1016/j.ijfoodmicro.2010.02.012
    [12] SVANSTROM A, BOVERI S, BOSTROM E, et al. The lactic acid bacteria metabolite phenyllactic acid inhibits both radial growth and sporulation of filamentous fungi[J]. BMC Research Notes,2013,6:464. doi:  10.1186/1756-0500-6-464
    [13] LE LAY C, COTON E, LE BLAY G, et al. Identification and quantification of antifungal compounds produced by lactic acid bacteria and propionibacteria[J]. International Journal of Food Microbiology,2016,239:79−85. doi:  10.1016/j.ijfoodmicro.2016.06.020
    [14] AL-ROUSAN W M, OLAIMAT A N, OSAILI T M, et al. Use of acetic and citric acids to inhibit Escherichia coli O157: H7, Salmonella typhimurium and Staphylococcus aureus in tabbouleh salad[J]. Food Microbiology,2018,73:61−66. doi:  10.1016/j.fm.2018.01.001
    [15] 苟拥军, 严林, 王煊锴, 等. 苹果汁发酵用乳酸菌的分离 筛选及增殖条件优化[J]. 农产品加工,2022(13):13−20. [GOU Y J, YAN L, WANG X K, et al. Isolation, screening and optimization of grown conditions of lactic acid bacteria for apple juice fermentation[J]. Farm Products Processing,2022(13):13−20.

    GOU Y J, YAN L, WANG X K, et al. Isolation, screening and optimization of grown conditions of lactic acid bacteria for apple juice fermentation [J]. Farm Products Processing, 2022(13): 13-20.
    [16] 李院. 酱菜中抑霉菌的乳酸菌分离、鉴定及抑菌活性物质分析[D]. 杨凌: 西北农林科技大学, 2015

    LI, Y. The isolation, identification and analysis of antimicrobial component of lactic acid bacteria inhibiting fungi in pickles[D]. Yangling: Northwest A&F University, 2015.
    [17] 布坎南, 吉本斯. 伯杰细菌鉴定手册[M]. 北京: 科学出版社, 1984: 797−826

    BUDANAN R E, GIBBONR N E. Berger handbook of bacterial identification[M]. Beijing: Science Press, 1984: 797−826.
    [18] YAO D, WANG X, MA L, et al. Impact of Weissella cibaria BYL4.2 and its supernatants on Penicillium chrysogenum metabolism[J]. Frontiers in Microbiology,2022,13:983613. doi:  10.3389/fmicb.2022.983613
    [19] CHEN H, JU H, WANG Y, et al. Antifungal activity and mode of action of lactic acid bacteria isolated from kefir against Penicillium expansum[J]. Food Control,2021,130:108274. doi:  10.1016/j.foodcont.2021.108274
    [20] SOMASHEKARAIAH R, MOTTAWEA W, GUNDURAJ A, et al. Probiotic and antifungal attributes of Levilactobacillus brevis MYSN105, isolated from an indian traditional fermented food pozha[J]. Frontiers in Microbiology,2021,12:696267. doi:  10.3389/fmicb.2021.696267
    [21] VELEZ P, ESPINOSA-ASUAR L, FIGUEROA M, et al. Nutrient dependent cross-kingdom interactions: Fungi and bacteria from an oligotrophic desert oasis[J]. Frontiers in Microbiology,2018,9:1755. doi:  10.3389/fmicb.2018.01755
    [22] 王巧丽. 猪源罗伊氏乳杆菌的筛选、特性研究及应用[D]. 兰州: 甘肃农业大学, 2013

    WANG Q L, Screening, characteristics and application of Lactobacillus reuteri from pigs[D]. Lanzhou: Gansu Agricultural University, 2013.
    [23] 苏布敦格日乐. 猪源乳酸菌的分离及其对猪瘟疫苗免疫协同作用的研究[D]. 呼和浩特: 内蒙古农业大学, 2008

    SU B D G R L. Identification and characterisation of lactic acid bacterial isolates and their effects on immune synergism with classical swine fever vaccine[D]. Hohhot: Inner Mongolia Agricultural University, 2008.
    [24] 肖俊, 张桂芳, 李艳芳, 等. 草鱼肠道乳酸菌的分离鉴定及适用性能评价[J]. 湖南农业科学,2022(4):65−69. [XIAO J, ZHANG G F, LI Y F, et al. Applicability, identification and isolation of lactic acid bacteria from grass carp intestine[J]. Hunan Agricultural Sciences,2022(4):65−69. doi:  10.16498/j.cnki.hnnykx.2022.004.018

    XIAO J, ZHANG G F, LI Y F, et al. Applicability, identification and isolation of lactic acid bacteria from grass carp intestine [J]. Hunan Agricultural Sciences, 2022(4): 65-69. doi:  10.16498/j.cnki.hnnykx.2022.004.018
    [25] 郑越, 段涛, 宋丹, 等. 六株植物乳杆菌的益生特性研究[J]. 食品与发酵工业,2022,48(10):119−125. [ZHENG Y, DUAN T, SONG D, et al. Probiotic properties of six Lactobacillus plantarum strains[J]. Food and Fermentation Industries,2022,48(10):119−125. doi:  10.13995/j.cnki.11-1802/ts.029063

    ZHENG Y, DUAN T, SONG D, et al. Probiotic properties of six Lactobacillus plantarum strains[J]. Food and Fermentation Industries, 2022, 48( 10): 119-125. doi:  10.13995/j.cnki.11-1802/ts.029063
    [26] HAI J Y, YONG F C, HUI J Y, et al. Screening for Lactobacillus plantarum with potential inhibitory activity against enteric pathogens[J]. Annals of Microbiology,2015,65(3):1257−1265. doi:  10.1007/s13213-014-0963-3
    [27] FRAQUEZA M J. Antibiotic resistance of lactic acid bacteria isolated from dry-fermented sausages[J]. International Journal of Food Microbiology,2015,212:76−88. doi:  10.1016/j.ijfoodmicro.2015.04.035
    [28] 何杉杉, 王晓蕊, 彭禹熙, 等. 雪莲菌中乳酸菌的益生特性[J]. 食品科学,2022,43(2):210−216. [HE S S, WANG X R, PENG Y X, et al. Probiotic properties of lactic acid bacteria isolated from Tibetan kefir grain[J]. Food Science,2022,43(2):210−216. doi:  10.7506/spkx1002-6630-20201224-282

    HE S S, WANG X R, PENG Y X, et al. Probiotic properties of lactic acid bacteria isolated from Tibetan kefir grain[J]. Food Science, 2022, 43(2): 210-216. doi:  10.7506/spkx1002-6630-20201224-282
    [29] 王楠, 尹纪元, 王英英, 等. 草鱼源乳酸菌的分离鉴定及其生物学特性研究[J]. 南方水产科学,2021,17(6):74−84. [WANG N, YIN J Y, WANG Y Y, et al. Isolation, identification and biological characteristics of Lactobacillus from grass carp[J]. South China Fisheries Science,2021,17(6):74−84. doi:  10.12131/20210039

    WANG N, YIN J Y, WANG Y Y, et al. Isolation, identification and biological characteristics of lactobacillus from grass carp [J]. South China Fisheries Science, 2021, 17(6): 74-84. doi:  10.12131/20210039
    [30] WERNER G. Current trends of emergence and spread of vancomycin-resistant enterococci[M]//IntechOpen, 2012.
    [31] DANIELSEN M, WIND A. Susceptibility of Lactobacillus spp. to antimicrobial agents[J]. International Journal of Food Microbiology,2003,82(1):1−11. doi:  10.1016/S0168-1605(02)00254-4
    [32] 冯金晓, 李明珠, 冯倩. 青岛市售酸奶中乳酸菌的分离鉴定及耐药性研究[J]. 现代食品,2018(5):106−109. [FENG J X, LI M Z, FENG Q. Identification and antibiotic resistance of lactic acid bacteria isolated from yogurt in Qingdao[J]. Modern Food,2018(5):106−109. doi:  10.16736/j.cnki.cn41-1434/ts.2018.05.034

    FENG J X, LI M Z, FENG Q. Identification and antibiotic resistance of lactic acid bacteria isolated from yogurt in Qingdao [J]. Modern Food, 2018(5): 106-109. doi:  10.16736/j.cnki.cn41-1434/ts.2018.05.034
    [33] 党乔, 孔令聪, 刘洁, 等. 泡菜发酵乳酸菌的分离鉴定及耐药性分析[J]. 食品科学,2019,40(20):166−170. [DANG Q, KONG L C, LIU J, et al. Isolation, identification and antimicrobial resistance analysis of lactic acid bacteria from kimchi[J]. Food Science,2019,40(20):166−170. doi:  10.7506/spkx1002-6630-20181109-093

    DANG Q, KONG L C, LIU J, et al. Isolation, identification and antimicrobial resistance analysis of lactic acid bacteria from kimchi [J]. Food Science, 2019, 40(20): 166-170. doi:  10.7506/spkx1002-6630-20181109-093
    [34] 王庆宇, 李啸, 宋宜兵, 等. 抑制馒头中腐败霉菌活性乳酸菌的筛选及其应用[J]. 中国酿造,2021,40(10):139−143. [WANG Q Y, LI X, SONG Y B, et al. Screening and application of lactic acid bacteria inhibiting spoilage mold activity in Mantou[J]. China Brewing,2021,40(10):139−143. doi:  10.11882/j.issn.0254-5071.2021.10.023

    WANG Q Y, LI X, SONG Y B, et al. Screening and application of lactic acid bacteria inhibiting spoilage mold activity in Mantou [J]. China Brewing, 2021, 40(10): 139-143. doi:  10.11882/j.issn.0254-5071.2021.10.023
    [35] GREIFOVA G, MAJEKOVA H, GREIF G, et al. Analysis of antimicrobial and immunomodulatory substances produced by heterofermentative Lactobacillus reuteri[J]. Folia Microbiologica,2017,62(6):515−524. doi:  10.1007/s12223-017-0524-9
    [36] 孙艳, 冯晓微, 刘佳玮, 等. 健康奶牛生殖道乳酸菌的分离鉴定及其抑菌活性研究[J]. 中国畜牧兽医,2022,49(5):1852−1859. [SUN Y, FENG X W, LIU J W, et al. Isolation, identification and antibacterial activity of lactic acid bacteria from reproductive tract of healthy dairy cows[J]. China Animal Husbandry & Veterinary Medicine,2022,49(5):1852−1859. doi:  10.16431/j.cnki.1671-7236.2022.05.025

    SUN Y, FENG X W, LIU J W, et al. Isolation, identification and antibacterial activity of lactic acid bacteria from reproductive tract of healthy dairy cows [J]. China Animal Husbandry & Veterinary Medicine, 2022, 49(5): 1852-1859. doi:  10.16431/j.cnki.1671-7236.2022.05.025
    [37] NEHAL F, SAHNOUN M, SMAOUI S, et al. Characterization, high production and antimicrobial activity of exopolysaccharides from Lactococcus lactis F-mou[J]. Microbial Pathogenesis,2019,132:10−19. doi:  10.1016/j.micpath.2019.04.018
    [38] 赵雅茹, 郭刚, 陈雷, 等. 抑霉乳酸菌的筛分及其抑菌特性研究[J]. 饲料研究,2021,44(2):62−66. [ZHAO Y R, GUO G, CHEN L, et al. Study on the screening and bacteriostatic characteristics of mildew-inhibiting Lactobacillus[J]. Feed Research,2021,44(2):62−66. doi:  10.13557/j.cnki.issn1002-2813.2021.02.015

    ZHAO Y R, GUO G, CHEN L, et al. Study on the screening and bacteriostatic characteristics of mildew-inhibiting Lactobacillus [J]. Feed Research, 2021, 44(2): 62-66. doi:  10.13557/j.cnki.issn1002-2813.2021.02.015
    [39] KULEY E, ÖZYURT G, ÖZOGUL I, et al. The role of selected lactic acid bacteria on organic acid accumulation during wet and spray-dried fish-based silages. Contributions to the winning combination of microbial food safety and environmental sustainability[J]. Microorganisms (Basel),2020,8(2):172. doi:  10.3390/microorganisms8020172
    [40] 丁宁, 陆兆新, 别小妹, 等. 谷物中具有抑制霉菌活性乳酸菌的分离筛选及鉴定[J]. 南京农业大学学报,2021,44(6):1187−1196. [DING N, LU Z X, BIE X M, et al. Isolation and identification of antifungal lactic acid bacteria from different grains[J]. Journal of Nanjing Agricultural University,2021,44(6):1187−1196. doi:  10.7685/jnau.202102003

    DING N, LU Z X, BIE X M, et al. Isolation and identification of antifungal lactic acid bacteria from different grains [J]. Journal of Nanjing Agricultural University, 2021, 44(6): 1187-1196. doi:  10.7685/jnau.202102003
    [41] 赵雅茹, 许庆方, 高文俊, 等. 抑霉乳酸菌脱毒特性及青贮应用的研究[J]. 生物技术通报,2021,37(9):95−105. [ZHAO Y R, XU F Q, GAO W J, et al. Study on the detoxification characteristics of antifungal lactic acid bacteria and the application of silage[J]. Biotechnology Bulletin,2021,37(9):95−105. doi:  10.13560/j.cnki.biotech.bull.1985.2021-0897

    ZHAO Y R, XU F Q, GAO W J, et al. Study on the detoxification characteristics of antifungal lactic acid bacteria and the application of silage [J]. Biotechnology Bulletin, 2021, 37(9): 95-105. doi:  10.13560/j.cnki.biotech.bull.1985.2021-0897
    [42] 吕好新, 赵玲丽, 霍珊珊, 等. 肉桂-山苍子复合植物精油对发霉花生黑曲霉BQM菌的抑菌效果[J]. 中国食品学报,2021,21(12):222−229. [LÜ H X, ZHAO L L, HUO S S, et al. The antifungal effect of cinnamon-litsea cubeba compound essential oil on Aspergillus niger BQM of moldy peanuts[J]. Journal of Chinese Institute of Food Science and Technology,2021,21(12):222−229. doi:  10.16429/j.1009-7848.2021.12.024

    LÜ H X, ZHAO L L, HUO S S, et al. The antifungal effect of cinnamon-litsea cubeba compound essential oil on Aspergillus niger BQM of moldy peanuts [J]. Journal of Chinese Institute of Food Science and Technology, 2021, 21(12): 222-229. doi:  10.16429/j.1009-7848.2021.12.024
  • 加载中
图(9) / 表(4)
计量
  • 文章访问数:  25
  • HTML全文浏览量:  16
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-08-31
  • 网络出版日期:  2023-05-21
  • 刊出日期:  2023-07-01

目录

    /

    返回文章
    返回