Preparation, Structural Characterization and in Vitro Activity of Chromium Complexes of Sweet Corn Cob Polysaccharide
-
摘要: 为提升甜玉米芯多糖生物学活性,制备一种甜玉米芯多糖铬配合物(SCP80-Cr),以单因素实验为基础,以响应面试验优化制备工艺,并进行表征及探究体外活性。结果表明,SCP80-Cr制备最佳工艺条件为pH10.1、反应温度74 ℃、多糖浓度3 mg/mL,反应时间60 min。SCP80-Cr中Cr元素重量百分比为21.08%,元素百分比为6.67%。对SCP80-Cr进行表征发现,SCP80-Cr几乎不含有蛋白、核酸、色素类物质,而Cr是以Cr-O及Cr-OH的形式与SCP80缔合,并具有较强的分子团聚特性。单糖组成测定说明SCP80-Cr单糖组成摩尔百分比为甘露糖:葡萄糖:半乳糖:木糖:阿拉伯糖=0.58:89.50:4.65:1.33:3.58。体外降糖实验结果表明,SCP80-Cr对α-淀粉酶及α-葡萄糖苷酶抑制率的IC50分别为4.70±0.38 mg/mL和3.99±0.26 mg/mL;体外抗氧化实验结果表明,SCP80-Cr清除DPPH自由基及羟基自由基IC50分别为4.80±0.34 mg/mL和4.99±0.28 mg/mL,说明SCP80-Cr相比于SCP80具有更好的体外降糖及抗氧化活性。研究结果为甜玉米芯多糖在功能性食品中的研究提供一定参考价值。
-
关键词:
- 甜玉米芯多糖铬配合物 /
- 表征 /
- 体外降糖 /
- 体外抗氧化
Abstract: To enhance the biological activity of sweet corn cob polysaccharide, a sweet corn cob polysaccharide chromium complex (SCP80-Cr) was prepared, characterized and its in vitro activity was also explored. The results showed that the optimal process conditions for the preparation were pH10.1, reaction temperature 74 ℃, polysaccharide concentration of 3 mg/mL, and the reaction time of 60 min. The weight percentage of Cr(III) in SCP80-Cr was 21.08% and the elemental percentage was 6.67%. The characterization revealed that SCP80-Cr contained almost no protein, nucleic acid or pigment, while Cr was conjugated with SCP80 in the form of Cr-O and Cr-OH and had strong molecular agglomeration properties. The molar percentage of the monosaccharide composition of SCP80-Cr was mannose: glucose: galactose: xylose: arabinose = 0.58: 89.50: 4.65: 1.33: 3.58. The results of in vitro hypoglycemia experiments showed that the IC50 of SCP80-Cr on α-amylase and α-glucosidase inhibitions were 4.70±0.38 mg/mL and 3.99±0.26 mg/mL, respectively. Moreover, the results of in vitro antioxidant experiments showed that SCP80-Cr scavenged DPPH radicals and hydroxyl radicals with IC50 of 4.80±0.34 mg/mL and 4.99±0.28 mg/mL, respectively, indicating that SCP80-Cr had better in vitro hypoglycemic and antioxidant activities compared with SCP80. The results of the study provided some references for the study of sweet corn cob polysaccharides in functional foods. -
表 1 星点设计因素与水平
Table 1. Factors and levels used for the central composite design
水平 因素 A pH B温度(℃) C多糖浓度(mg/mL) −1.682 9.00 70.00 2.00 −1 9.41 72.03 2.41 0 10.00 75.00 3.00 1 10.59 77.97 3.59 1.682 11.00 80.00 4.00 表 2 液相梯度洗脱条件
Table 2. HPLC gradient elution conditions
时间(min) 流动相(%) A B 0 86 14 9 83 17 28 78 22 29 50 50 31 50 50 表 3 星点设计-响应面法试验设计及结果
Table 3. Experimental design and results of central design response surface method (CCD)
试验号 因素 Y 铁离子还原力(A) A pH B 温度 C 多糖浓度 1 0 0 −1.682 0.301 2 −1 −1 1 0.173 3 1 −1 −1 0.189 4 −1 −1 −1 0.306 5 1 −1 1 0.404 6 0 −1.682 0 0.417 7 0 0 0 0.539 8 0 1 1 0.310 9 0 0 0 0.513 10 0 1.682 0 0.291 11 0 0 1.682 0.276 12 0 0 0 0.396 13 0 0 0 0.491 14 −1 1 −1 0.136 15 1.682 0 0 0.252 16 −1.682 0 0 0.107 17 0 0 0 0.497 18 −1 1 1 0.101 19 1 1 −1 0.231 20 0 0 0 0.521 表 4 回归方程的方差分析结果
Table 4. Analysis of variance of regression model
差异来源 平方和 自由度 均方 F值 P 显著性 模型 0.37 9 0.041 16.65 <0.0001 ** A 0.032 1 0.032 13.14 0.0046 ** B 0.019 1 0.019 7.68 0.0198 * C 5.161×10−4 1 5.161×10−3 0.21 0.6555 AB 4.513×10−3 1 4.513×10−3 1.85 0.2038 AC 0.027 1 0.027 10.93 0.0079 ** BC 1.805×10−4 1 1.805×10−4 0.074 0.7912 A2 0.20 1 0.20 80.83 <0.0001 ** B2 0.044 1 0.044 18.06 0.0017 ** C2 0.089 1 0.089 36.35 0.0001 ** 残差 0.024 10 2.441×10−3 失拟项 0.012 5 2.336×10−3 0.92 0.5365 不显著 纯误差 0.013 5 2.546×10−3 总和 0.39 19 注:*代表影响显著(P<0.05);**代表影响极显著(P<0.01)。 -
[1] BI Z, ZHAO Y, HU J, et al. A novel polysaccharide from Lonicerae japonicae caulis: Characterization and effects on the function of fibroblast-like synoviocytes[J]. Carbohydrate Polymers,2022,292:119674. doi: 10.1016/j.carbpol.2022.119674 [2] WANG S, LI G, ZHANG X, et al. Structural characterization and antioxidant activity of Polygonatum sibiricum polysaccharides[J]. Carbohydrate Polymers,2022,291:119524. doi: 10.1016/j.carbpol.2022.119524 [3] SONG J, WU Y, MA X, et al. Structural characterization and α-glycosidase inhibitory activity of a novel polysaccharide fraction from Aconitum coreanum[J]. Carbohydrate Polymers,2020,230(C):115586. [4] LIU W, HU C, LIU Y, et al. Preparation, characterization, and α-glycosidase inhibition activity of a carboxymethylated polysaccharide from the residue of Sarcandra glabra (Thunb.) Nakai[J]. International Journal of Biological Macromolecules, 2017, 99: 454−464. [5] LU K, CHEN S, LIN Y, et al. An antidiabetic nutraceutical combination of red yeast rice (Monascus purpureus), bitter gourd (Momordica charantia), and chromium alleviates dedifferentiation of pancreatic β cells in db/db mice[J]. Food Science & Nutrition, 2020, 8(12): 6718-6726. [6] YE H, SHEN Z, CUI J, et al. Hypoglycemic activity and mechanism of the sulfated rhamnose polysaccharides chromium(III) complex in type 2 diabetic mice[J]. Bioorganic Chemistry, 2019, 88: 102942. [7] WANG X, XIU W, HAN Y, et al. Structural characterization of a novel polysaccharide from sweet corncob that inhibits glycosylase in STZ-induced diabetic rats: Structural characterization of a novel polysaccharide[J]. Glycoconjugate Journal,2022,39(3):413−427. [8] WANG X, WANG Z, ZHANG K, et al. Effects of sweet corncob polysaccharide on pancreatic protein expression in type 2 diabetic rats[J]. Journal of Functional Foods, 2022, 88. [9] MA Y, WANG X, GAO S. Hypoglycemic activity of polysaccharides from sweet corncob on streptozotocin-induced diabetic rats.[J]. Journal of Food Science,2017,82(1):208−213. doi: 10.1111/1750-3841.13554 [10] WANG X, XIU W, HAN Y. et al. Structural characterization of a non-starch polysaccharide from sweet corn cobs[J]. Journal of Food Processing and Preservation, 2022, 46(9). [11] 秦月. 虎眼万年青多糖及其铬复合物降血糖作用的研究[D]. 哈尔滨: 黑龙江中医药大学, 2018: 30−32QIN Y. Hypoglycemic effect of Ornithogalum caudatum polysaccharide and its chromium complex[D]. Harbin: Heilongjiang University of Chinese Medicine, 2018: 30−32. [12] 公衍玲, 郭遥遥, 刘洋. 樱桃核乙醇提取物体外抗氧化及降糖降脂研究[J]. 青岛科技大学学报(自然科学版),2017,38(6):14−17. [GONG Y L, GUO Y Y, LIU Y. Study on in vitro antioxidant, hypoglycemic and lipid-lowering activities of cherry kernel ethanol extracts[J]. Journal of Qingdao University of Science and Technology(Natural Science Edition),2017,38(6):14−17.GONG Y, GUO Y, LIU Y. Study on in vitro antioxidant, hypoglycemic and lipid-lowering activities of cherry kernel ethanol extracts[J]. Journal of Qingdao University of Science and Technology(Natural Science Edition), 2017, 38(6): 14-17. [13] 陈玥彤, 张闪闪, 李文意, 等. 黑木耳多糖的磷酸化修饰、结构表征及体外降糖活性[J]. 食品科学,2022,43(8):29−35. [CHEN Y T, ZHANG S S, LI W Y, et al. Structural characterization and hypoglycemic effect in vitro of phosphorylated Auricularia auriculata polysaccharide[J]. Food Science,2022,43(8):29−35.CHEN Y, ZHANG S, LI W, et al. Structural characterization and hypoglycemic effect in vitro of phosphorylated Auricularia auriculata polysaccharide[J] Food Science, 2022, 43(8): 29-35. [14] 李春英, 夏依拉·艾尼, 毛建卫, 等. 栀子黄对α-葡萄糖苷酶抑制活性的研究[J]. 新宝登录入口(中国)有限公司,2015,36(24):112−114, 119. [LI C Y, XIAYILA A, MAO J W, et al. Study on the inhibitory effect of gardenia yellow on α-glucosidase activity[J]. Science and Technology of Food Industry,2015,36(24):112−114, 119.LI C, XIAYILA A, MAO, J, et al. Study on the inhibitory effect of gardenia yellow on α-glucosidase activity[J] Science and Technology of Food Industry, 2015, 36(24): 112-114, 119. [15] ZUO M, LIU X, LIU D, et al. Extraction, Characterization and antioxidant activity in vitro of proteins from Semen Allii Fistulosi[J]. Molecules,2018,23(12):3235. doi: 10.3390/molecules23123235 [16] ZHANG Y, CHEN Z, HUANG Z, et al. A comparative study on the structures of Grifola Frondosa polysaccharides obtained by different decolourization methods and their in vitro antioxidant activities[J]. Food & Function,2019,10(10):.6720−6731. [17] LI L, XU J, CAO Y, et al. Preparation of Ganoderma lucidum polysaccharide-chromium (III) complex and its hypoglycemic and hypolipidemic activities in high-fat and high-fructose diet-induced prediabetic mice[J]. International Journal of Biological Macromolecules,2019,140(C):782−793. [18] QIU J, ZHANG H, WANG Z, et al. Response surface methodology for the synthesis of an Auricularia auricula-judae polysaccharides CDDP complex[J]. International Journal of Biological Macromolecules,2016,93:333−343. doi: 10.1016/j.ijbiomac.2016.06.066 [19] GUO W, SHI F, LI L, et al. Preparation of a novel Grifola frondosa polysaccharide-chromium (III) complex and its hypoglycemic and hypolipidemic activities in high fat diet and streptozotocin-induced diabetic mice[J]. International Journal of Biological Macromolecules,2019,131:81−88. doi: 10.1016/j.ijbiomac.2019.03.042 [20] 张雯, 张禧庆, 董淑君, 等. 南瓜皮多糖铬的制备与体外消化的分析[J]. 新宝登录入口(中国)有限公司,2022,43(17):223−229. [ZHANG W, ZHANG X Q, DONG S J, et al. Preparation and in vitro digestibility of pumpkin peel polysaccharide chromium(III) complex[J]. Science and Technology of Food Industry,2022,43(17):223−229. doi: 10.13386/j.issn1002-0306.2021110329ZHANG W, ZHANG X, DONG S, et al. Preparation and in vitro digestibility of pumpkin peel polysaccharide chromium(III) complex[J]. Science and Technology of Food Industry, 2022, 43(17): 223-229. doi: 10.13386/j.issn1002-0306.2021110329 [21] 邰克东, 赵苏茂, 杨紫恒, 等. 高压均质对脂质体囊泡特性和稳定性的影响[J]. 食品科学,2019,40(17):169−177. [TAI K D, ZHAO S M, YANG Z H. et al. Effect of high-pressure homogenization on vesicle characteristics and stability of liposomes[J]. Food Science,2019,40(17):169−177. doi: 10.7506/spkx1002-6630-20180916-158TAI K, ZHAO S, YANG Z. et al. Effect of high-pressure homogenization on vesicle characteristics and stability of liposomes[J]. Food Science, 2019, 40(17): 169-177. doi: 10.7506/spkx1002-6630-20180916-158 [22] 郑成娟, 李珊珊, 陈青. 金樱子果渣中脂肪酸与玉米淀粉包合物的制备及性能[J]. 精细化工,2020,37(12):2482−2489. [ZHENG C J, LI S S, CHEN Q. Preparation and properties of inclusion compound of corn starch and fatty acid in Rasa laevigata pomace[J]. Fine Chemicals,2020,37(12):2482−2489. doi: 10.13550/j.jxhg.20200656ZHENG C, LI S, CHEN Q. Preparation and properties of inclusion compound of corn starch and fatty acid in Rasa laevigata pomace[J]. Fine Chemicals, 2020, 37(12): 2482-2489. doi: 10.13550/j.jxhg.20200656 [23] 张秀娟, 刘治廷, 杨诗涵, 等. 超声波辅助酶法提取蓝莓果渣花色苷的工艺优化及降解动力学[J]. 精细化工,2022,39(10):2069−2077, 2098. [ZHANG X J, LIU Z T, YANG S H, et al. Condition optimization and degradation kinetics of anthocyanins from blueberry pomace by ultrasonic-assisted enzymatic extraction[J]. Fine Chemicals,2022,39(10):2069−2077, 2098.ZHANG X, LIU Z, YANG S, et al. Condition optimization and degradation kinetics of anthocyanins from blueberry pomace by ultrasonic-assisted enzymatic extraction[J], Fine Chemicals, 2022, 39(10): 2069-2077, 2098. [24] ZHANG W, LI L, MA Y, et al. Structural characterization and hypoglycemic activity of a novel pumpkin peel polysaccharide-chromium(III) complex[J]. Foods, 2022, 11(13): 1821-1821. [25] 全志刚, 王维浩, 赵姝婷, 等. 小米麸皮水溶性膳食纤维-Cr(III)配合物的合成、表征及其体外抗氧化活性[J]. 食品科学,2021,42(21):46−55. [QUAN Z G, WANG W H, ZHAO S T, et al. Synthesis, characterization and antioxidant activity of millet bran soluble dietary fiber-Cr(Ⅲ) complexes[J]. Food Science,2021,42(21):46−55. doi: 10.7506/spkx1002-6630-20200902-023QUAN Z, WANG W, ZHAO S, et al. Synthesis, characterization and antioxidant activity of millet bran soluble dietary fiber-Cr(Ⅲ) complexes[J]. Food Science, 2021, 42(21): 46-55. doi: 10.7506/spkx1002-6630-20200902-023 [26] TAO E, CHENG Y, YANG S, et al. Recovering Cr(III) from chromium-containing waste: An in-depth study on mechanism via retaining organic matters[J]. Journal of Environmental Chemical Engineering, 2021, 9(5). [27] 刘思美, 赵鹏, 张婷婷, 等. 地黄硒多糖的合成、表征及免疫活性分析[J]. 中国中药杂志,2022,47(11):2938−2946. [LIU S M, ZHAO P, ZHANG T T, et al. Synthesis, characterization, and immunological activity of Rehmannia glutinosa seleno-polysaccharides[J]. China Journal of Chinese Materia Medica,2022,47(11):2938−2946. doi: 10.19540/j.cnki.cjcmm.20220224.304LIU S, ZHAO P, ZHANG T, et al. Synthesis, characterization, and immunological activity of Rehmannia glutinosa seleno-polysaccharides[J]. China Journal of Chinese Materia Medica, 2022, 47(11): 2938-2946. doi: 10.19540/j.cnki.cjcmm.20220224.304 [28] 汤陈鹏, 吕峰, 王蓉琳. 孔石莼多糖锌结构表征与体外降血糖活性[J]. 食品科学,2020,41(7):52−58. [TANG C P, LÜ F, WANG R L. Structural characterization and hypoglycemic activity in vitro of Ulva pertusa polysaccharides-zinc complex[J]. Food Science,2020,41(7):52−58. doi: 10.7506/spkx1002-6630-20190320-263TANG C, LV F, WANG R. Structural characterization and hypoglycemic activity in vitro of Ulva pertusa polysaccharides-zinc complex[J]. Food Science, 2020, 41(7): 52-58. doi: 10.7506/spkx1002-6630-20190320-263 [29] WANG C, GAO X, SANTHANAM R, et al. Effects of polysaccharides from Inonotus obliquus and its chromium (III) complex on advanced glycation end-products formation, α-amylase, α-glucosidase activity and H2O2 -induced oxidative damage in hepatic L02 cells[J]. Food and Chemical Toxicology, 2018, 116(Pt B): 335−345. [30] ZHANG J, CHEN C, FU X. et al. Fructus mori L. polysaccharide-iron chelates formed by self-embedding with iron(iii) as the core exhibit good antioxidant activity[J]. Food & Function,2019,10(6):3150−3160. -