Preparation and Property Analysis of Flavonoids Microcapsules from Tartary Buckwheat Sprout
-
摘要: 为提高苦荞芽苗黄酮的稳定性及生物利用率,以卡拉胶+变性淀粉、阿拉伯胶(gum arabic,GA)+变性淀粉、麦芽糊精(maltodextrin,MD)+变性淀粉+明胶为壁材,采用喷雾干燥法制备三种苦荞芽苗黄酮微胶囊,并对微胶囊的水分含量、休止角、吸湿性和抗氧化特性等理化指标及微观形态、粒径等性能进行综合分析。结果表明,卡拉胶+变性淀粉制备的微胶囊水分含量(6.58%)较低,堆积密度较大,休止角较小(13.20°),流动性较好,吸湿性变化慢,DPPH自由基和ABTS阳离子自由基的清除能力高,抗氧化能力更强,表面形态饱满,呈球形,粒径均一度较高。GA+变性淀粉、MD+变性淀粉+明胶制备的微胶囊包埋率较高依次为82.21%、82.72%,相较于卡拉胶+变性淀粉,这两种微胶囊抗氧化能力较低,吸湿稳定性较差,颗粒表面有较大孔洞且粒径均一度低。傅里叶变换红外光谱分析表明三种微胶囊都含有黄酮的特征吸收峰。三种微胶囊在模拟肠液中释放性能优于在模拟胃液中,这有利于芯材在肠道中释放并发挥抗氧化作用。综合分析可知,卡拉胶+变性淀粉是制备苦荞芽苗提取物微胶囊较为理想的壁材。该研究有助于促进苦荞芽苗提取物的微胶囊化及在功能性食品领域的应用。Abstract: To improve the stability and bioavailability of tartary buckwheat sprout flavanoids, microcapsules containing tartary buckwheat sprout flavanoids (TBSF) were prepared according to spray drying process using carrageenan+modified starch, gum arabic (GA)+modified starch, maltodextrin (MD)+modified starch+gelatin as the wall materials. The structure and antioxidant activity of TBSF microcapsules were analyzed by measuring the water content, repose angle, hygroscopicity, DPPH and ABTS+ free radical scavenging capacity of microcapsules. The results indicated that the microcapsule prepared from carrageenan+modified starch showed best performance, which possessed lowest water content (6.58%), largest bulk density and smallest repose angle (13.20°), best fluidity, slowest hygroscopicity change, highest scavenging capacity of DPPH and ABTS+ free radicals, as well as highest uniformity with full and spherical surface. The embedding rate of GA+modified starch and MD+modified starch+gelatin microcapsules were 82.21% and 82.72%, respectively. Compared to carrageenan+modified starch, these two kinds of microcapsules displayed relative low antioxidant capacity, poor moisture absorption stability, large pores on the particle surface and worse uniformity. The fourier transform infrared spectroscopy analysis showed that three kinds of microcapsules contained characteristic absorption peaks of flavonoids. The release performance of three kinds of microcapsules in simulated intestinal fluid were all better than in simulated gastric juice, implied that the core materials (flavanoids) in microcapsules were mainly conducive to be released in the intestine and functioned as antioxidants. Totally, carrageenan+modified starch was an ideal wall material for production of TBSF microcapsules. Results would be helpful to promote the microencapsulation of tartary buckwheat sprout flavanoids and its application in the field of functional food.
-
表 1 不同壁材制备的苦荞芽苗黄酮微胶囊理化性质比较
Table 1. Comparison of physiochemical properties of tartary buckwheat sprout flavonoids microcapsules prepared with different wall materials
壁材 包埋率(%) 水分含量(%) 堆积密度(g·cm−3) 休止角(°) 吸湿性(%) 对照组 / 7.06±0.17c 0.29±0.01c 20.55±1.03b 62.14±3.37d 卡拉胶+变性淀粉 72.67±2.53a 6.58±0.26b 0.33±0.01d 13.20±0.88a 25.34±1.72a GA+变性淀粉 82.21±2.52b 6.09±0.14a 0.24±0.02b 27.29±0.35c 31.29±1.39b MD+变性淀粉+明胶 82.72±5.41b 6.96±0.11c 0.14±0.01a 38.15±1.97d 46.01±4.02c 注:同列不同小写字母表示差异显著(P<0.05)。 -
[1] 何伟俊, 曾荣, 白永亮, 等. 苦荞麦的营养价值及开发利用研究进展[J]. 农产品加工,2019(23):69−75. [HE W J, ZENG R, BAI Y L, et al. The nutritive value andprogress in development and utilization of tartary buckwheat[J]. Farm Products Processing,2019(23):69−75.HE W J, ZENG R, BAI Y L, et al. The nutritive value andprogress in development and utilization of tartary buckwheat[J]. Farm Products Processing, 2019 (23): 69-75. [2] LU C L, ZHENG Q, SHEN Q, et al. Uncovering the relationship and mechanisms of tartary buckwheat (Fagopyrum tataricum) and type II diabetes, hypertension, and hyperlipidemia using a network pharmacology approach[J]. Peer J,2017,5:e4042. doi: 10.7717/peerj.4042 [3] 马麟, 彭镰心, 赵钢. 我国苦荞芽菜生产及其食品开发研究进展[J]. 农产品加工,2015,11(21):64−67, 71. [MA L, PENG L X, ZHAO G. Research progress in tatary buckwheat sprouts production and related food[J]. Farm Products Processing,2015,11(21):64−67, 71.MA L, PENG L X , ZHAO G . Research progress in tatary buckwheat sprouts production and related food[J]. Farm Products Processing, 2015, 11 (21): 64-67, 71. [4] 童晓萌, 柴春祥, 王永强. 萌发对苦荞籽粒品质的影响及工艺优化[J]. 食品与机械,2021(4):176−183. [TONG X M, CHAI C X, WANG Y Q. Effect of germination on grain quality of tartary buckwheat and optimization of technology[J]. Food & Machinery,2021(4):176−183.TONG X M, CAI CH X, WANG Y Q. Effect of germination on grain quality of tartary buckwheat and optimization of technology[J]. Food&Machinery, 2021 (4): 176-183. [5] 药雅俊, 柳雪姣, 裴妙荣, 等. 苦荞降血糖降血脂药效机制研究进展[J]. 山西中医,2020,36(2):59−62. [YAO Y J, LIU X J, PEI M R, et al. Research progress on mechanism of tartary buckwheat in lowering blood glucose and blood lipid[J]. Shanxi Journal of Traditional Chinese Medicine,2020,36(2):59−62. doi: 10.3969/j.issn.1000-7156.2020.02.027YAO Y J, LIU X J, PEI M R, et al. Research progress on mechanism of tartary buckwheat in lowering blood glucose and blood lipid [J]. Shanxi Journal of Traditional Chinese Medicine, 2020, 36 (2): 59-62. doi: 10.3969/j.issn.1000-7156.2020.02.027 [6] 茹万飞. 不同萌发条件及成熟度对花生芽营养成分及白藜芦醇含量的研究[D]. 沈阳: 辽宁大学, 2018.RU W F. Study on different germination conditions and maturity of peanut bud nutrients and resveratrol conten[D]. Shenyang: Liaoning University, 2018. [7] 高立城, 夏美娟, 白文明, 等. 甜荞和苦荞萌发过程中营养成分分析[J]. 营养学报,2019,41(6):617−619. [GAO L C, XIA M J, BAI W M, et al. Nutritional analysis of common buckwheat and tartary buckwheat during germination[J]. Journal of Nutrition,2019,41(6):617−619.GAO L C, XIA M J, BAI W M, et al. Nutritional analysis of common buckwheat and tartary buckwheat during germination[J]. Journal of Nutrition, 2019, 41(6): 617-619. [8] 高芬, 王宇婷, 石磊, 等. 荞麦发芽过程中植酸含量变化的研究[J]. 农产品加工,2019(13):59−61, 66. [GAO F, WANG Y T, SHI L. Study on the change of phytic acid content in buckwheat germination process[J]. Farm Products Processing,2019(13):59−61, 66.GAO F, WANG Y T, SHI L. Study on the change of phytic acid content in buckwheat germination process[J]. Farm Products Processing, 2019(13): 59-61, 66. [9] BAO T, WANG Y, LI Y T, et al. Antioxidant and antidiabetic properties of tartary buckwheat rice flavonoids after in vitro digestion[J]. Journal of Zhejiang University-Science B (Biomed & Biotechnol),2016,17(12):941−951. [10] 孙坤坤, 卢奕霏, 侯泽豪, 等. 苦荞芽菜游离酚、结合酚及抗氧化活性研究[J]. 西北农业学报,2020,29(7):1035−1044. [SUN K K, LU Y F, HOU Z H, et al. Free and bound phenolic compounds and antioxidant activities in tartary buckwheat sprouts[J]. Acta Agriculturae Boreali-occidentalis Sinica,2020,29(7):1035−1044. doi: 10.7606/j.issn.1004-1389.2020.07.008SUN K K, LU Y F, HOU Z Ho, et al. Free and bound phenolic compounds and antioxidant activities in tartary buckwheat sprouts[J]. Acta Agriculturae Boreali-occidentalis Sinica, 2020, 29 (7): 1035-1044. doi: 10.7606/j.issn.1004-1389.2020.07.008 [11] 邓娇, 赵佳利, 张晓娜, 等. 荞麦种子过敏蛋白的研究进展[J]. 现代免疫学,2019,39(3):253−256. [DENG J, ZHAO J L, ZHANG X N, et al. Research progress of buckwheat seed allergen protein[J]. Current Immunology,2019,39(3):253−256.DENG J, ZHAO J L, ZHANG X N, et al. Research progress of buckwheat seed allergen protein[J]. Current Immunology, 2019, 39 (3): 253-256. [12] 赵梦月, 段续, 任广跃, 等. 山茱萸黄酮微胶囊制备工艺及性质[J]. 食品与发酵工业,2023,49(7):181−189. [ZHAO M Y, DUAN X, REN G Y, et al. Study on preparation and properties of flavonoid microcapsules from Cornus officinalis[J]. Food and Fermentation Industries,2023,49(7):181−189. doi: 10.13995/j.cnki.11-1802/ts.031533ZHAO M Y, DUAN X, REN G Y, et al. Study on preparation and properties of flavonoid microcapsules from Cornus officinalis[J]. Food and Fermentation Industries, 2023, 49(7): 181-189. doi: 10.13995/j.cnki.11-1802/ts.031533 [13] 俞邱豪, 程焕, 王楠, 等. 类黄酮微胶囊技术及其在食品工业中的应用进展[J]. 中国食品学报,2017,17(7):175−183. [YU Q H, CHENG H, WANG N, et al. Advances in flavonoid microcapsule technology and its application in food industry[J]. Journal of Chinese Institute of Food Science and Technology,2017,17(7):175−183. doi: 10.16429/j.1009-7848.2017.07.022YU Q H, CHENG H, WANG N, et al. Advances in flavonoid microcapsule technology and its application in food industry[J]. Journal of Chinese Institute of Food Science and Technology, 2017, 17(7): 175-183. doi: 10.16429/j.1009-7848.2017.07.022 [14] SUGANYA V, ANURADHA V, RESEARCH C. Microencapsulation and nanoencapsulation: A review[J]. International Journal of Pharmaceutical & Clinical Research,2017,9(3):233−239. [15] 李俊, 卢阳, 刘永翔, 等. 乳酸菌发酵对苦荞芽苗饮料品质和营养成分的影响[J]. 食品与机械,2018,34(12):196−199. [LI J, LU Y, LIU Y X, et al. Effects of lactobacillus fermentation on the quality and nutrient of tartary buckwheat seedling beverage[J]. Food & Machinery,2018,34(12):196−199. doi: 10.13652/j.issn.1003-5788.2018.12.039LI J , LU Y , LIU Y X, et al. Effects of lactobacillus fermentation on the quality and nutrient of tartary buckwheat seedling beverage [J]. Food &Machinery, 2018, 34(12): 196-199. doi: 10.13652/j.issn.1003-5788.2018.12.039 [16] BALLESTEROS L F, RARMIREZ M J, ORREGO C E, et al. Encapsulation of antioxidant phenolic compounds extracted from spent coffee grounds by freeze-drying and spray-drying using different coating materials[J]. Food Chemistry,2017,237:623−631. doi: 10.1016/j.foodchem.2017.05.142 [17] BAKOWSKA-BARCZAK A M, KOLODZIEJCZYK P P. Black currant polyphenols: Their storage stabilityand microencapsulation[J]. Industrial Crops & Products,2010,34(2):1301−1309. [18] 黄珊, 刘嘉, 李贵华, 等. 壁材对方竹叶黄酮微胶囊结构及抗氧化性能的影响[J]. 新宝登录入口(中国)有限公司,2021,42(22):55−61. [HUANG S, LIU J, LI G H, et al. Effects of wall materials on the structure and antioxidant activities of the bamboo leaves flavonoids microcapsules[J]. Science and Technology of Food Industry,2021,42(22):55−61.HUANG S, LIU J, LI G H, et al. Effects of wall materials on the structure and antioxidant activities of the bamboo leaves flavonoids microcapsules[J]. Science and Technology of Food Industry, 2021, 42(22): 55−61. . [19] 黄晓梅, 韦翠兰, 侯俊杰, 等. 大豆蛋白酶解产物的微胶囊化及理化性质表征[J]. 现代食品科技,2020,36(7):202−208. [HUANG X M, WEI C L, HOU J J, et al. Microencapsulation andcharacterization of soybean protein hydrolysates[J]. Modern Food Science and Technology,2020,36(7):202−208. doi: 10.13982/j.mfst.1673-9078.2020.7.0977HUANG X M, WEI C L, HOU J J, et al. Microencapsulation andcharacterization of soybean protein hydrolysates[J]. Modern Food Science and Technology, 2020, 36(7): 202−208. doi: 10.13982/j.mfst.1673-9078.2020.7.0977 [20] 邓姣, 刘鑫, 成文豪, 等. pH值响应型负载白藜芦醇微胶囊的制备与抗氧化活性分析[J]. 食品科学,2019,40(20):54−59. [DENG J, LIU X, CHENG W H, et al. Preparation and antioxidant activity of pH responsive microcapsules loaded with resveratrol[J]. Food Science,2019,40(20):54−59. doi: 10.7506/spkx1002-6630-20181022-236DENG J, LIU X, CHENG W H, et al. Preparation and antioxidant activity of pH responsive microcapsules loaded with resveratrol[J]. Food Science, 2019, 40(20): 54-59. doi: 10.7506/spkx1002-6630-20181022-236 [21] WANG M, GAO F, ZHENG H, et al. Microencapsulation of ginsenosides using polymerised whey protein (PWP) as wall material and its application in probiotic fermented milk[J]. International Journal of Food Science & Technology,2017,52(4):1009−1017. [22] 李斌, 许彬, 程爽, 等. 光皮梾木籽油微胶囊化及其制品的理化性质[J]. 中国粮油学报,2018,33(10):58−62. [LI B, XU B, CHEN S, et al. Physical and chemical properties of Cornus wilsoniana seed oil microcapsules and its product[J]. Journal of the Chinese Cereals and Oils Association,2018,33(10):58−62. doi: 10.3969/j.issn.1003-0174.2018.10.011LI B, XU B, CHEN S, et al. Physical and chemical properties of Cornus wilsoniana seed oil microcapsules and its product[J]. Journal of the Chinese Cereals and Oils Association, 2018, 33(10): 58-62. doi: 10.3969/j.issn.1003-0174.2018.10.011 [23] POONAM, MISHRA, SANJAY, et al. Effect of maltodextrin concentration and inlet temperature during spray drying on physico-chemical and antioxidant properties of amla (Emblica officinalis) juice powder[J]. Food & Bioproducts Processing,2014,92(3):252−258. [24] 陈筠. 芸香苷的包埋改性及其应用研究[D]. 长沙: 湖南农业大学, 2017.CHEN Y. Study on embedding modification of rutin and its application[D]. Changsha: Hunan Agricultural University, 2017. [25] JIA C S, CAO D D, JI S P, et al. Whey protein isolate conjugated with xylo-oligosaccharides via maillard reaction: Characterization, antioxidant capacity, and application for lycopene microencapsulation[J]. LWT-Food Science and Technology,2019,118:108−115. [26] ALVARENGA D B, FERNANDES D B, BORGES S V, et al. Influence of wall matrix systems on the properties of spray-driedmi-croparticles containing fish oil[J]. Food Research International,2014,62:344−352. doi: 10.1016/j.foodres.2014.02.003 [27] KARRAR E, MAHDI A A, SHETH S, et al. Effect of maltodextrin combination with gum arabic and whey protein isolate on the microencapsulation of gurum seed oil using a spray-drying method[J]. Int J Biol Macromol,2021,171:208−216. doi: 10.1016/j.ijbiomac.2020.12.045 [28] 朱巧玲, 邹宇晓, 廖森泰, 等. 抑菌性桑枝低聚糖微胶囊的制备及结构表征[J]. 新宝登录入口(中国)有限公司,2022,43(20):244−251. [ZHU Q L, ZOU Y X, LIAO S T, et al. Preparation and structure characterization of Ramulus mori oligosaccharides microcapsules with antibacterial activity[J]. Science and Technology of Food Industry,2022,43(20):244−251. doi: 10.13386/j.issn1002-0306.2022020138ZHU L Q, ZOU Y X, LIAO S, et al. Preparation and structure characterization of Ramulus mori oligosaccharides microcapsules with antibacterial activity[J]. Science and Technology of Food Industry, 2022, 43(20): 244-251. doi: 10.13386/j.issn1002-0306.2022020138 [29] 江连洲, 綦玉曼, 马春芳, 等. 鱼油纳米乳液运载体系构建与稳定性研究[J]. 农业机械学报, 2018, 49(10) : 387-395.JIANG L Z, QI Y M, MA C F, et al Formation and stability of fish oil enriched biocompatible nano-emulsion[J]. Transactions of the Chinese Society for Agricultural Machinery, 2018 , 49(10): 387-395. [30] 陈程莉, 李丰泉, 刁倩, 等. 黑枸杞花青素微胶囊优化及理化特性分析[J]. 食品与发酵工业,2020,46(5):208−214. [CHEN C L, LI F Q, DIAO Q, et al. Optimization and analysis of physical and chemical properties of black Lycium ruthenicum murranthocyanin microcapsules[J]. Food and Fermentation Industries,2020,46(5):208−214. doi: 10.13995/j.cnki.11-1802/ts.022576CHEN C L, LI F Q, DIAO Q, et al. Optimization and analysis of physical and chemical properties of black Lycium ruthenicum murranthocyanin microcapsules[J]. Food and Fermentation Industries, 2020, 46(5): 208 -214. doi: 10.13995/j.cnki.11-1802/ts.022576 [31] TOHGE T, WATANABE M, HOEFGEN R, et al. The evolution of phenylpropanoid metabolism in the green lineage[J]. Critical Reviews in Biochemistry and Molecular Biology,2013,48(2):123−152. doi: 10.3109/10409238.2012.758083 [32] 孙亚利, 周文美, 黄永光, 等. 以聚合乳清蛋白为壁材的苦荞黄酮微胶囊化及其品质分析[J]. 食品科学,2020,41(12):259−266. [SUN Y L, ZHOU W M, HUANG Y G, et al. Microencapsulation and quality analysis of tartary buckwheat flavonoids using polymerized whey protein as wall material[J]. Food Science,2020,41(12):259−266. doi: 10.7506/spkx1002-6630-20190624-291SUN Y L, ZHOU W M, HUANG Y G, et al. Microencapsulation and quality analysis of tartary buckwheat flavonoids using polymerized whey protein as wall material[J]. Food Science, 2020, 41(12): 259-266. doi: 10.7506/spkx1002-6630-20190624-291 [33] MIAO Y, LV Q, QIAO S, et al. Alpinetin improves intestinal barrier homeostasis via regulating AhR/suv39h1/TSC2/mTORC1/autophagy pathway[J]. Toxicol Appl Pharm,2019,12(1):11−17. [34] 谢冬冰, 郭玉婷. 白花蛇舌草提取物多糖和总黄酮对于结肠癌 HT-29 细胞的抑制作用[J]. 中国药物与临床,2021,21(19):3217−3220. [XIE D B, GUO Y T. Polysaccharides and total flavonoids from Oldenlandia diffusa extracts inhibit colorectal cancer HT-29 cells in vitro[J]. Chin Reme Clin,2021,21(19):3217−3220.XIE D B, GUO Y T. Polysaccharides and total flavonoids from Oldenlandia diffusa extracts inhibit colorectal cancer HT-29 cells in vitro [J]. Chin Reme Clin, 2021, 21(19): 3217–3220. [35] 李红领, 李海涛. 金雀异黄酮通过抑制黄嘌呤氧化酶延缓结肠肿瘤发展[J]. 食品与发酵工业,2022,48(2):150−155. [LI H L, LI H T. Genistein retard the progression of colitis-associated colorectal cancer by inhibiting xanthine oxidase[J]. Food Ferment Ind,2022,48(2):150−155. doi: 10.13995/j.cnki.11-1802/ts.027506LI H L, LI H T. Genistein retard the progression of colitis-associated colorectal cancer by inhibiting xanthine oxidase [J]. Food Ferment Ind, 2022, 48(2): 150–155. doi: 10.13995/j.cnki.11-1802/ts.027506 -