Effects of Different Packaging Methods on the Microbial Diversity in Chilled Chicken
-
摘要: 为研究不同包装方式对冷鲜鸡肉贮藏期间菌群组成的影响,本文利用Illumina MiSeq高通量测序分析了不同包装方式下的微生物多样性。结果表明,在4 ℃冷藏期间, MAP,VP和N2包装能显著降低微生物数量和挥发性盐基氮含量。高通量测序表明冷鲜鸡肉贮藏初期菌种丰富度高,贮藏后期优势菌属逐渐演变为假单胞菌属、环丝菌属、不动杆菌属和希瓦氏菌属,说明它们能耐受较低的温度。与PP组相比,MAP组假单胞菌属和不动杆菌属的丰度分别降低14.8%和9.2%,而N2组不动杆菌属和希瓦氏菌属的丰度分别降低9.6%和7.4%。VP组不动杆菌属、环丝菌属丰度下降8%和5.6%。不同包装方式对冷鲜鸡肉中的菌群影响较大,三种包装均能抑制不动杆菌属的生长,气调包装对假单胞菌属抑制效果较好,而充氮包装和真空包装对希瓦氏菌属和环丝菌属有较好的抑制效果,本研究也为未来冷鲜鸡肉所采用的包装方式提供理论基础。Abstract: To investigate the effects of different packaging methods on microbial composition of chilled chicken during storage, the microbial diversity was analyzed by Illumina MiSeq high-throughput sequencing. The results showed that the modified atmosphere packaging (MAP), the vacuum packaging (VP) and the nitrogen-filled packaging (N2) could significantly reduce the number of microorganisms and volatile base nitrogen during refrigeration at 4 °C compared with the pallet packed (PP) group. High-throughput sequencing showed that the bacterial species richness of chilled chicken was high in the early stage of storage. The dominant bacteria of chilled chickens in PP group at the later stage of storage were Pseudomonas, Brochothrix, Acinetobacter and Shewanella. It indicated that they could tolerate lower temperatures. Compared with the PP group, the abundance of Pseudomonas and Acinetobacter in MAP group decreased by 14.8% and 9.2%, respectively, while nitrogen-filled packaging reduced the abundance of Acinetobacter and Shewanella. by 9.6% and 7.4%, respectively. The abundance of Acinetobacter and Brochothrix decreased significantly by 8% and 5.6% after vacuum packaging. Different packaging methods could have a greater impact on the flora in chilled chicken meat. All three types of packaging could inhibit the growth of Acinetobacter and MAP had a better inhibitory effect on Pseudomonas, while nitrogen-filled packaging and vacuum packaging had a better inhibitory effect on Shewanella and Brochothrix. This study also provides a theoretical basis for the future packaging methods used in chilled chicken meat.
-
表 1 alpha多样性部分指数统计表
Table 1. Statistical table of selected indices of alpha diversity
Sample ID Shannon指数 Simpson指数 覆盖率 CS 5.74±0.33a 0.963±0.005a 1.00 MAP 3.24±0.15b 0.807±0.026b 1.00 N2 2.74±0.21bc 0.753±0.041c 1.00 VP 3.06±0.19bc 0.800±0.024bc 1.00 PP 3.10±0.08c 0.807±0.012bc 0.996±0.0047 注:同列不同小写字母表示差异显著P<0.05。 -
[1] 黄柳娟, 冯博, 刘海燕, 等. 冷鲜鸡肉表面及内部细菌菌群的多样性分析[J]. 上海农业学报,2021,37(1):104−109. [HUANG L J, FENG B, LIU H Y, et al. Diversity analysis of surface and internal bacterial flora of chilled chicken meat[J]. Shanghai Journal of Agriculture,2021,37(1):104−109. doi: 10.15955/j.issn1000-3924.2021.01.18HUANG L J, FENG B, LIU H Y, et al. Diversity analysis of surface and internal bacterial flora of chilled chicken meat[J]. Shanghai Journal of Agriculture, 2021, 37(1): 104-109. doi: 10.15955/j.issn1000-3924.2021.01.18 [2] 梁慧, 于立梅, 陈秀兰, 等. 鸡胸肉冷藏过程中腐败菌分析及其品质变化研究[J]. 食品与发酵工业,2016,42(10):184−188. [LIANG H, YU L M, CHEN X L, et al. Analysis of spoilage bacteria and quality changes in chicken breast during refrigeration[J]. Food and Fermentation Industry,2016,42(10):184−188. doi: 10.13995/j.cnki.11-1802/ts.201610030LIANG H, YU L M, CHEN X L, et al. Analysis of spoilage bacteria and quality changes in chicken breast during refrigeration[J]. Food and Fermentation Industry, 2016, 42(10): 184-8. doi: 10.13995/j.cnki.11-1802/ts.201610030 [3] FERNÁNDEZ-PAN I, CARRIÓN-GRANDA X, MATÉ J I. Antimicrobial efficiency of edible coatings on the preservation of chicken breast fillets[J]. Food Control,2014,36(1):69−75. doi: 10.1016/j.foodcont.2013.07.032 [4] ROUGER A, MORICEAU N, PRÉVOST H, et al. Diversity of bacterial communities in French chicken cuts stored under modified atmosphere packaging[J]. Food Microbiology,2018,70:7−16. doi: 10.1016/j.fm.2017.08.013 [5] HUANG J, GUO Y, HOU Q, et al. Dynamic changes of the bacterial communities in roast chicken stored under normal and modified atmosphere packaging[J]. Journal of Food Science,2020,85(4):1231−1239. doi: 10.1111/1750-3841.15038 [6] 刘均, 沈佳敏, 沈建良, 等. 不同包装方式对货架期冷鲜鸡微生物菌相变化的影响[J]. 浙江农业学报,2020,32(7):1274−1280. [LIU J, SHEN J M, SHEN J L, et al. Effect of different packaging methods on microbial phase changes of chilled chicken during shelf life[J]. Zhejiang Journal of Agriculture,2020,32(7):1274−1280. doi: 10.3969/j.issn.1004-1524.2020.07.16LIU J, SHEN J M, SHEN J L, et al. Effect of different packaging methods on microbial phase changes of chilled chicken during shelf life[J]. Zhejiang Journal of Agriculture, 2020, 32(7): 1274-1280. doi: 10.3969/j.issn.1004-1524.2020.07.16 [7] 高磊, 谢晶, 叶藻, 等. 不同包装方式对冷鲜鸡的保鲜效果[J]. 食品与发酵工业,2016,42(3):217−223. [GAO L, XIE J, YE Z, et al. Effect of different packaging methods on the freshness of chilled chicken[J]. Food and Fermentation Industry,2016,42(3):217−223. doi: 10.13995/j.cnki.11-1802/ts.201603039GAO L, XIE J, YE Z, et al. Effect of different packaging methods on the freshness of chilled chicken [J]. Food and Fermentation Industry, 2016, 42(3): 217-223. doi: 10.13995/j.cnki.11-1802/ts.201603039 [8] DOULGERAKI A I, ERCOLINI D, VILLANI F, et al. Spoilage microbiota associated to the storage of raw meat in different conditions[J]. International Journal of Food Microbiology,2012,157(2):130−141. doi: 10.1016/j.ijfoodmicro.2012.05.020 [9] 赖宏刚, 蒋云升, 张元嵩, 等. 真空包装冷鲜鸡中腐败菌微生物的分离鉴定[J]. 江苏农业科学,2018,46(17):198−201. [LAI H G, JIANG Y S, ZHANG Y S, et al. Isolation and identification of spoilage bacteria microorganisms in vacuum-packed chilled chicken[J]. Jiangsu Agricultural Science,2018,46(17):198−201. doi: 10.15889/j.issn.1002-1302.2018.17.053LAI H G, JIANG Y S, ZHANG Y S, et al. Isolation and identification of spoilage bacteria microorganisms in vacuum-packed chilled chicken [J]. Jiangsu Agricultural Science, 2018, 46(17): 198-201. doi: 10.15889/j.issn.1002-1302.2018.17.053 [10] LIANG R, YU X, WANG R, et al. Bacterial diversity and spoilage-related microbiota associated with freshly prepared chicken products under aerobic conditions at 4 ℃[J]. Journal of Food Protection,2012,75(6):1057−1062. doi: 10.4315/0362-028X.JFP-11-439 [11] YU C, SÉAMUS F, SINÉAD P, et al. A review on the applications of next generation sequencing technologies as applied to food-related microbiome studies[J]. Frontiers in Microbiology,2017,8:1829. doi: 10.3389/fmicb.2017.01829 [12] ERCOLINI D. High-throughput sequencing and metagenomics: Moving forward in the culture-independent analysis of food microbial ecology[J]. Applied and Environmental Microbiology,2013,79(10):3148−3155. doi: 10.1128/AEM.00256-13 [13] ZHANG T, CHEN L, DING H, et al. The potential effect of microbiota in predicting the freshness of chilled chicken[J]. British Poultry Science,2022,63(3):360−367. doi: 10.1080/00071668.2021.2003753 [14] YANG L, SHANG Y, YING S, et al. Changes in the quality of superchilled rabbit meat stored at different temperatures[J]. Meat Science,2016,117:173−181. doi: 10.1016/j.meatsci.2016.02.017 [15] YANG L, HUANG J, CHENG Y, et al. Changes in bacterial communities and the volatilome of braised chicken with different packaging stored at 4 ℃[J]. Food Research International,2022,155:111056. doi: 10.1016/j.foodres.2022.111056 [16] LI X, LI C, YE H, et al. Changes in the microbial communities in vacuum-packaged smoked bacon during storage[J]. Food Microbiology,2019,77:26−37. doi: 10.1016/j.fm.2018.08.007 [17] MUELA E, SAÑUDO C, CAMPO M M, et al. Effect of freezing method and frozen storage duration on instrumental quality of lamb throughout display[J]. Meat Science,2010,84(4):662−669. doi: 10.1016/j.meatsci.2009.10.028 [18] HUANG L, ZHAO J, CHEN Q, et al. Nondestructive measurement of total volatile basic nitrogen (TVB-N) in pork meat by integrating near infrared spectroscopy, computer vision and electronic nose techniques[J]. Food Chemistry,2014,145:228−236. doi: 10.1016/j.foodchem.2013.06.073 [19] JIA S, HUANG Z, LEI Y, et al. Application of Illumina-MiSeq high throughput sequencing and culture-dependent techniques for the identification of microbiota of silver carp (Hypophthalmichthys molitrix) treated by tea polyphenols[J]. Food Microbiology,2018,76:52−61. doi: 10.1016/j.fm.2018.04.010 [20] CHAILLOU S, CHAULOT-TALMON A, CAEKEBEKE H, et al. Origin and ecological selection of core and food-specific bacterial communities associated with meat and seafood spoilage[J]. The ISME Journal,2015,9(5):1105−1118. doi: 10.1038/ismej.2014.202 [21] ERCOLINI D, CASABURI A, NASI A, et al. Different molecular types of Pseudomonas fragi have the same overall behaviour as meat spoilers[J]. International Journal of Food Microbiology,2010,142(1-2):120−131. doi: 10.1016/j.ijfoodmicro.2010.06.012 [22] ELLIS D I, GOODACRE R. Rapid and quantitative detection of the microbial spoilage of muscle foods: current status and future trends[J]. Trends in Food Science & Technology,2001,12(11):414−424. [23] 温冬玲, 成淑君, 刘悦, 等. 高通量测序分析不同增菌温度下冷鲜鸡肉细菌的群落多样性[J]. 食品科学,2018,39(24):156−161. [WEN D L, CHENG S J, LIU Y, et al. High-throughput sequencing analysis of bacterial community diversity of chilled chicken meat at different enrichment temperatures[J]. Food Science,2018,39(24):156−161. doi: 10.7506/spkx1002-6630-201824024WEN D L, CHENG S J, LIU Y, et al. High-throughput sequencing analysis of bacterial community diversity of chilled chicken meat at different enrichment temperatures[J]. Food Science, 2018, 39(24): 156-161. doi: 10.7506/spkx1002-6630-201824024 [24] 茹志莹, 唐婷婷, 姚瑶, 等. 高通量测序方法分析冰鲜鸡肉保鲜期间微生物菌相变化研究[J]. 食品安全质量检测学报,2019,10(11):3319−3328. [RU Z Y, TANG T T, YAO Y, et al. Analysis of microbial phase changes of chilled chicken during preservation by high-throughput sequencing[J]. Journal of Food Safety and Quality Testing,2019,10(11):3319−3328. doi: 10.3969/j.issn.2095-0381.2019.11.016RU Z Y, TANG T T, YAO Y, et al. Analysis of microbial phase changes of chilled chicken during preservation by high-throughput sequencing[J]. Journal of Food Safety and Quality Testing, 2019, 10(11): 3319-3328. doi: 10.3969/j.issn.2095-0381.2019.11.016 [25] PAPADOPOULOU O S, DOULGERAKI A I, BOTTA C, et al. Genotypic characterization of Brochothrix thermosphacta isolated during storage of minced pork under aerobic or modified atmosphere packaging conditions[J]. Meat Science,2012,92(4):735−738. doi: 10.1016/j.meatsci.2012.06.030 [26] RUSSO F, ERCOLINI D, MAURIELLO G, et al. Behaviour of Brochothrix thermosphacta in presence of other meat spoilage microbial groups[J]. Food Microbiology,2006,23(8):797−802. doi: 10.1016/j.fm.2006.02.004 [27] GRIBBLE A, BRIGHTWELL G. Spoilage characteristics of Brochothrix thermosphacta and campestris in chilled vacuum packaged lamb, and their detection and identification by real time PCR[J]. Meat Science,2013,94(3):361−368. doi: 10.1016/j.meatsci.2013.03.016 [28] CARVALHEIRA A, SILVA J, TEIXEIRA P. Acinetobacter spp. in food and drinking water-A review[J]. Food Microbiology,2021,95:103675. doi: 10.1016/j.fm.2020.103675 [29] ARGYRI A A, PAPADOPOULOU O S, SOURRI P, et al. Quality and safety of fresh chicken fillets after high pressure processing: Survival of indigenous Brochothrix thermosphacta and inoculated Listeria monocytogenes[J]. Microorganisms,2019,7(11):520. doi: 10.3390/microorganisms7110520 [30] MAI X, WANG W, ZHANG X, et al. Mathematical modeling of the effects of temperature and modified atmosphere packaging on the growth kinetics of Pseudomonas lundensis and Shewanella putrefaciens in chilled chicken[J]. Foods,2022,11(18):2824. doi: 10.3390/foods11182824 -