• 食品科学与工程领域高质量科技期刊分级目录第一方阵T1
  • Scopus
  • FSTA
  • 北大核心期刊
  • 中国核心学术期刊RCCSE
  • DOAJ
  • JST China
  • 中国精品科技期刊
  • 中国农业核心期刊
  • CA
  • WJCI
  • 中国科技核心期刊CSTPCD
  • 中国生物医学SinoMed
中国精品科技期刊2020 食品青年科学家峰会

大孔吸附树脂纯化茶多酚的工艺优化及抗氧化活性研究

李晓洁 刘金鑫 李建华 谈亚丽 杜维力 李啸

李晓洁,刘金鑫,李建华,等. 大孔吸附树脂纯化茶多酚的工艺优化及抗氧化活性研究[J]. 新宝登录入口(中国)有限公司,2023,44(13):214−223. doi:  10.13386/j.issn1002-0306.2022090164
引用本文: 李晓洁,刘金鑫,李建华,等. 大孔吸附树脂纯化茶多酚的工艺优化及抗氧化活性研究[J]. 新宝登录入口(中国)有限公司,2023,44(13):214−223. doi:  10.13386/j.issn1002-0306.2022090164
LI Xiaojie, LIU Jinxin, LI Jianhua, et al. Optimization of Purification of Tea Polyphenols with Macroporous Adsorption Resin and Research of Their Antioxidant Activity[J]. Science and Technology of Food Industry, 2023, 44(13): 214−223. (in Chinese with English abstract). doi:  10.13386/j.issn1002-0306.2022090164
Citation: LI Xiaojie, LIU Jinxin, LI Jianhua, et al. Optimization of Purification of Tea Polyphenols with Macroporous Adsorption Resin and Research of Their Antioxidant Activity[J]. Science and Technology of Food Industry, 2023, 44(13): 214−223. (in Chinese with English abstract). doi:  10.13386/j.issn1002-0306.2022090164

大孔吸附树脂纯化茶多酚的工艺优化及抗氧化活性研究

doi: 10.13386/j.issn1002-0306.2022090164
基金项目: 国家重点研发计划(2021YFC2101100)
详细信息
    作者简介:

    李晓洁(1998−),女,硕士研究生,研究方向:茶叶深加工,E-mail:616451051@qq.com

    通讯作者:

    李啸(1969−),男,博士,教授,研究方向:微生物反应过程的优化与控制,E-mail:lx_6910@163.com

  • 中图分类号: R284.2

Optimization of Purification of Tea Polyphenols with Macroporous Adsorption Resin and Research of Their Antioxidant Activity

  • 摘要: 为优化大孔吸附树脂纯化茶多酚的最佳工艺条件,通过对比14种不同类型大孔吸附树脂的静态吸附-解吸特性,在筛选出适宜的树脂型号后,利用单因素与响应面试验确定最佳提纯工艺要求,并进一步考察了树脂的重复使用和再生次数。同时,以VC为对照采用体外实验考察纯化前、后茶多酚的抗氧化活性。结果表明,LX-8树脂对茶多酚的吸附-解吸效果最好,可重复使用5次、再生6次。其最佳纯化工艺条件:100 mL浓度为6.4 mg/mL,pH5.4的茶汤以1.0 mL/min流速上样至LX-8树脂后,经180 mL 76%乙醇溶液以1.0 mL/min流速解吸,在该条件下茶多酚的回收率为86.9%,纯度为74.6%。体外抗氧化活性试验结果表明,纯化后茶多酚的总抗氧化能力、清除DPPH·和·OH的能力均有显著性增加,且随着浓度的增大,其抗氧化能力增强,其总抗氧化能力(1 mg/mL)为80.59 U/mL,对DPPH·和·OH清除能力的IC50值分别为0.0326和0.4167 mg/mL。虽然低于VC的抗氧化活性,但均高于纯化前的茶多酚,说明通过该工艺,能够显著提高茶多酚的抗氧化活性,且当纯化后茶多酚浓度为1 mg/mL时,其DPPH·清除率已经接近VC的DPPH·清除率,本研究为茶多酚的工业化生产和开发利用提供理论参考。
  • 图  1  LX-8树脂对茶多酚的吸附等温曲线

    Figure  1.  Adsorption isotherm curves of tea polyphenols by LX-8 resin

    图  2  LX-8树脂对茶多酚的吸附动力学曲线

    Figure  2.  Adsorption kinetic curves of tea polyphenols by LX-8 resin

    图  3  pH对LX-8树脂吸附率的影响

    Figure  3.  Effect of pH on the adsorption rate of LX-8 resin

    注:不同小写字母表示在不同水平之间存在显著性差异(P<0.05);图4图6同。

    图  4  茶汤浓度对LX-8树脂吸附率的影响

    Figure  4.  Effect of sample solution concentration on the adsorption rate of LX-8 resin

    图  5  不同吸附流速的泄漏曲线

    Figure  5.  The leakage curve of different flow velocity

    图  6  乙醇浓度对LX-8树脂解吸率的影响

    Figure  6.  Effect of ethanol concentration on the desorption rate of LX-8 resin

    图  7  不同解吸流速的解吸曲线

    Figure  7.  The desorption curves of different desorption flow rates

    图  8  pH、茶汤浓度和乙醇浓度对茶多酚回收率交互影响的响应面及等高线

    Figure  8.  Response surface plots and contour line of effects of interaction between pH, concentration of tea soup and ethanol concentration on the recovery rate of tea polyphenols

    图  9  LX-8树脂重复使用次数对吸附量和吸附率的影响

    Figure  9.  The effect of repeated use of LX-8 resin on adsorption capacity and adsorption rate

    图  10  LX-8树脂再生次数对吸附量和吸附率的影响

    Figure  10.  The effect of regeneration times of LX-8 resin on adsorption capacity and adsorption rate

    图  11  不同浓度样品的总抗氧化能力效果

    Figure  11.  Effects of total antioxidant capacity of samples with different concentrations

    注:不同小写字母表示同一样品组内不同浓度间差异显著(P<0.05),图12图13同。

    图  12  不同浓度样品对DPPH·的清除效果

    Figure  12.  Scavenging effects of DPPH· of samples with different concentrations

    图  13  不同浓度样品对·OH的清除效果

    Figure  13.  Scavenging effects of ·OH of samples with different concentrations

    表  1  Box-Behnken试验设计因素与水平

    Table  1.   Factors and levels of Box-Behnken experiments design

    水平A pHB茶汤浓度(mg/mL)C 乙醇浓度(%)
    −14.375.1660
    05.376.2470
    16.377.3280
    下载: 导出CSV

    表  2  14种大孔树脂的静态吸附和解吸效果

    Table  2.   Static adsorption and desorption effects of 14 macroporous resins

    树脂型号极性吸附量(mg/g)吸附率(%)解吸量(mg/g)解吸率(%)
    LX-B14极性39.20±0.55b90.85±1.27a28.52±0.65b72.77±0.86ef
    XDA-8G极性21.86±0.23f68.80±0.72b17.26±0.29d78.95±1.98d
    LX-8极性33.09±0.27c90.65±0.74a29.87±0.69a90.26±1.92ab
    SP207极性25.83±0.26e58.20±0.59d16.89±0.93d65.39±3.59g
    D301极性41.76±0.30a90.69±0.66a11.46±0.87e27.44±1.88h
    HZW635极性26.59±0.69de68.07±1.78b20.87±0.50c78.56±3.84d
    HZW636极性27.01±0.80d62.64±1.86c20.35±0.97c75.46±5.88de
    ADS-17中极性1.90±0.53h3.42±0.96e1.54±0.44f81.12±1.97cd
    HPD450中极性2.90±0.82gh4.69±1.32e1.96±0.52f67.84±1.72fg
    AB-8弱极性2.35±0.48gh4.87±0.98e2.11±0.38f90.26±4.24ab
    X-5非极性2.66±0.37gh4.39±0.62e2.04±0.32f76.72±2.23de
    D101非极性2.24±0.41h4.83±0.89e1.92±0.44f85.09±4.57bc
    H103非极性3.33±0.86g5.17±1.32e2.10±0.46f63.65±2.83g
    HPD100非极性2.89±0.56gh5.32±1.02e2.64±0.55f91.02±1.83a
    注:同列不同字母表示差异显著(P<0.05)。
    下载: 导出CSV

    表  3  不同温度下的Langmuir模型拟合参数

    Table  3.   Fitting parameters of Langmuir models at different temperatures

    温度(℃)Langmuir方程KLqmaxR2
    25Ce/qe=0.0148Ce+0.00881.68267.570.9984
    35Ce/qe=0.0229Ce+0.01321.73543.670.9931
    45Ce/qe=0.0406Ce+0.01372.96424.630.9823
    注:qe为饱和吸附量,mg/g;qt为t时刻吸附量,mg/g;qmax为树脂最大吸附量,mg/g;Ce为吸附饱和的茶多酚浓度,mg/mL;KL、KF、n为特征常数,表4表5同。
    下载: 导出CSV

    表  4  不同温度下的Freundlich模型拟合参数

    Table  4.   Fitting parameters of Freundlich models at different temperatures

    温度(℃)Freundlich方程KF1/nR2
    25lnqe=0.4806InCe−3.49630.030.48060.9831
    35lnqe=0.5678InCe−3.23860.040.56780.9805
    45lnqe=0.6557InCe−2.8140.060.65570.9235
    下载: 导出CSV

    表  5  吸附动力学模型拟合参数

    Table  5.   Fitting parameters of adsorption kinetics models

    拟合模型拟合方程qekR2
    一级动力学ln(qe-qt)=−0.3252t+1.23.320.3250.846
    二级动力学t/qt=0.1285t+2.20227.780.0080.9996
    下载: 导出CSV

    表  6  响应面试验设计及结果

    Table  6.   Design and results of response surface experiment

    试验号A pHB 茶汤浓度C 乙醇浓度Y 回收率(%)
    110182.6±0.26
    200086.4±0.17
    3−10−180.4±0.10
    400087.5±0.29
    51−1072.8±0.26
    610−174.7±0.30
    7−10181.2±0.44
    8−1−1077.9±0.40
    901183.8±0.46
    1000087.2±0.17
    110−1181.6±0.30
    120−1−179.2±0.10
    1301−182.7±0.20
    1411077.4±0.36
    15−11078.3±0.17
    1600087.6±0.30
    1700087.9±0.10
    下载: 导出CSV

    表  7  回归模型方差分析

    Table  7.   Variance analysis of regression model

    方差来源平方和自由度均方FP显著性
    模型341.23937.9151.93< 0.0001**
    A13.26113.2618.160.0037**
    B14.31114.3119.600.0031**
    C18.60118.6025.480.0015**
    AB4.4114.416.040.0436*
    AC12.60112.6017.260.0043**
    BC0.4210.420.580.4717
    A2173.001173.00236.97< 0.0001**
    B278.22178.22107.13< 0.0001**
    C25.9115.918.100.0248*
    残差5.1170.73
    失拟项3.8031.273.880.1118不显著
    纯误差1.3140.33
    总和346.3416
    R2=0.9852R²adj=0.9663
    注:“*”表示对结果影响差异显著(P<0.05);“**”表示对结果影响差异极显著(P<0.01)。
    下载: 导出CSV
  • [1] 杨新, 陈莉, 卢红梅, 等. 茶多酚提取与纯化方法及其功能活性研究进展[J]. 新宝登录入口(中国)有限公司,2019,40(5):322−328, 332. [YANG Xin, CHEN Li, LU Hongmei, et al. Research progress on extraction and purification methods of tea polyphenols and its functional activities[J]. Science and Technology of Food Industry,2019,40(5):322−328, 332.

    YANG Xin, CHEN Li, LU Hongmei, et al. Research progress on extraction and purification methods of tea polyphenols and its functional activities[J]. Science and Technology of Food Industry, 2019, 40(5): 322-328, 332.
    [2] 丁东晴, 申懿玲, 杜晶, 等. 黑茶多酚提取工艺及对鲜切苹果品质影响[J]. 粮食与油脂,2022,35(4):129−134. [DING Dongqing, SHEN Yiling, DU Jing, et al. Effects of extraction technology of dark tea polyphenols on quality of fresh-cut apple[J]. Cereals and Oils,2022,35(4):129−134. doi:  10.3969/j.issn.1008-9578.2022.04.032

    DING Dongqing, SHEN Yiling, DU Jing, et al. Effects of extraction technology of dark tea polyphenols on quality of fresh-cut apple[J]. Cereals and Oils, 2022, 35(4): 129-134. doi:  10.3969/j.issn.1008-9578.2022.04.032
    [3] 洪思慧, 张涛麟. 茶多酚提取专利技术综述[J]. 江西化工,2021,37(3):69−72. [HONG Sihui, ZHANG Taolin. Review of patented technology of tea polyphenol extraction[J]. Jiangxi Chemical Industry,2021,37(3):69−72. doi:  10.3969/j.issn.1008-3103.2021.03.020

    HONG Sihui, ZHANG Taolin. Review of patented technology of tea polyphenol extraction[J]. Jiangxi Chemical Industry, 2021, 37(3): 69-72. doi:  10.3969/j.issn.1008-3103.2021.03.020
    [4] ZHANG Yuting, CHENG Lu, LIU Yanan, et al. Omics analyses of intestinal microbiota and hypothalamus clock genes in circadian disturbance model mice fed with green tea polyphenols[J]. Journal of Agricultural and Food Chemistry,2022,70(6):1890−1901. doi:  10.1021/acs.jafc.1c07594
    [5] LUO Yue, ZHANG Jianan, TANG Hochi, et al. Management of Maillard reaction-derived reactive carbonyl species and advanced glycation end products by tea and tea polyphenols[J]. Food Science and Human Wellness,2022,11(3):557−567. doi:  10.1016/j.fshw.2021.12.012
    [6] HONG Mengyu, CHENG Lu, LIU Yanan, et al. A natural plant source-tea polyphenols, a potential drug for improving immunity and combating virus[J]. Nutrients,2022,14(3):550−565. doi:  10.3390/nu14030550
    [7] TRUONG V, JEONG W. Antioxidant and anti-inflammatory roles of tea polyphenols in inflammatory bowel diseases[J]. Food Science and Human Wellness,2022,11(3):502−511. doi:  10.1016/j.fshw.2021.12.008
    [8] 高海荣, 王亚鑫, 谢晨, 等. XDA-5大孔树脂分离茶叶中茶多酚工艺优化[J]. 中国食品添加剂,2019,30(11):67−72. [GAO Hairong, WANG Yaxin, XIE Chen, et al. Optimization of separation for tea polyphenols by XDA-5 macroporous resin[J]. China Food Additives,2019,30(11):67−72.

    GAO Hairong, WANG Yaxin, XIE Chen, et al. Optimization of separation for tea polyphenols by XDA-5 macroporous resin[J]. China Food Additives, 2019, 30(11): 67-72.
    [9] 吴婕, 宫江宁. 大孔树脂纯化甜茶多酚及其对α-葡萄糖苷酶抑制活性和DPPH·抗氧化性的研究[J]. 中国农业科技导报,2021,23(6):113−119. [WU Jie, GONG Jiangning. Purification of polyphenols from sweet tea by the microporous resins and its inhibitory activity on α-glucosidase and DPPH·[J]. Journal of Agricultural Science and Technology,2021,23(6):113−119.

    WU Jie, GONG Jiangning. Purification of polyphenols from sweet tea by the microporous resins and its inhibitory activity on α-glucosidase and DPPH·[J]. Journal of Agricultural Science and Technology, 2021, 23(6): 113-119.
    [10] 曹雪文. 大孔树脂对茶多酚提取纯化及茶多酚抗氧化性能研究[D]. 赣州: 江西理工大学, 2020

    CAO Xuewen. Study on the extraction and purification of tea polyphenols by macroporous resin and the antioxidant properties of tea polyphenols[D]. Ganzhou: Jiangxi University of Science and Technology, 2020.
    [11] 欧淑琼, 唐倩, 李媛, 等. 茶树花中多酚浸提工艺的优化研究[J]. 茶叶通讯,2020,47(3):467−471. [OU Shuqiong, TANG Qian, LI Yuan, et al. Optimization of the extraction process of polyphenols from tea flower[J]. Journal of Tea Communication,2020,47(3):467−471.

    OU Shuqiong, TANG Qian, LI Yuan, et al. Optimization of the extraction process of polyphenols from tea flower[J]. Journal of Tea Communication, 2020, 47(3): 467-471.
    [12] 蓝梧涛. 油茶叶多酚提取纯化及稳定性、抗氧化活性的研究[D]. 广州: 华南农业大学, 2019

    LAN Wutao. Study on extraction, purification, stability and antioxidant activity of polyphenols from Camellia oleifera[D]. Guangzhou: South China Agricultural University, 2019.
    [13] 张沛, 吴楠, 宋志军, 等. 响应面法优化大孔树脂纯化黄芪毛蕊异黄酮工艺[J]. 新宝登录入口(中国)有限公司,2021,42(10):209−214. [ZHANG Pei, WU Nan, SONG Zhijun, et al. Purification of calycosin from Astragalus membranceus with macroporous resins by response surface analysis[J]. Science and Technology of Food Industry,2021,42(10):209−214.

    ZHANG Pei, WU Nan, SONG Zhijun, et al. Purification of calycosin from Astragalus membranceus with macroporous resins by response surface analysis[J]. Science and Technology of Food Industry, 2021, 42(10): 209-214.
    [14] BAI Y D, MA J, ZHU W F, et al. Highly selective separation and purification of chicoric acid from echinacea purpurea by quality control methods in macroporous adsorption resin column chromatography[J]. J Sep Sci,2019,42(5):1027−1036.
    [15] ZHANG L, ZHENG D, ZHANG Q F. Purification of total flavonoids from Rhizoma Smilacis Glabrae through cyclodextrin-assisted extraction and resin adsorption[J]. Food Sci Nutr,2019,7(2):449−456. doi:  10.1002/fsn3.809
    [16] 沈志伟, 方芳, 龚云麒, 等. 以曲札茋苷为评价指标的大孔树脂再生工艺优化[J]. 中国民族民间医药,2019,28(8):45−48. [SHEN Zhiwei, FANG Fan, GONG Yunqi, et al. Optimization of regeneration process of macroporous resin with Quzhazhigan as evaluation index[J]. Chinese Journal of Ethnomedicine and Ethnopharmacy,2019,28(8):45−48. doi:  10.3969/j.issn.1007-8517.2019.8.zgmzmjyyzz201908013

    SHENG Zhiwei, FANG Fan, GONG Yunqi, et al. Optimization of regeneration process of macroporous resin with Quzhazhigan as evaluation index[J]. Chinese Journal of Ethnomedicine and Ethnopharmacy, 2019, 28(8): 45-48. doi:  10.3969/j.issn.1007-8517.2019.8.zgmzmjyyzz201908013
    [17] 田富林, 黄文晶, 张驰, 等. HPD600型大孔树脂纯化麦麸多酚及其抗氧化活性和定性分析[J]. 食品与机械,2022,38(5):173−178,242. [TIAN Fulin, HUANG Wenjing, ZHANG Chi, et al. Antioxidant activity and qualitative analysis of wheat bran polyphenols purified using HPD600 macroporous resin[J]. Food and Machinery,2022,38(5):173−178,242.

    TIAN Fulin, HUANG Wenjing, ZHANG Chi, et al. Antioxidant activity and qualitative analysis of wheat bran polyphenols purified using HPD600 macroporous resin[J]. Food and Machinery, 2022, 38(5): 173-178, 242.
    [18] FATIHA E B, CLOTILDE N, LI L, et al. A new colorimetric DPPH radical scavenging activity method: Comparison with spectrophotometric assay in some medicinal plants used in moroccan pharmacopoeia[J]. Pharmaceutical Fronts,2022,4(2):89−102.
    [19] 谢雨寻, 叶有明, 李龙越, 等. 茶酒糟中茶多酚提取工艺优化及其抗氧化活性的研究[J]. 中国酿造,2022,41(2):204−209. [XIE Yuxun, YE Youming, LI Longyue, et al. Optimization of extraction process and antioxidant activity of tea polyphenols from tea distiller's grains[J]. China Brewing,2022,41(2):204−209.

    XIE Yuxun, YE Youming, LI Longyue, et al. Optimization of extraction process and antioxidant activity of tea polyphenols from tea distiller's grains[J]. China Brewing, 2022, 41(2): 204-209.
    [20] 沈嘉森, 苏永昌, 陈晓婷, 等. 龙须菜ACE抑制肽的体外稳定性和抗氧化活性研究[J]. 新宝登录入口(中国)有限公司,2022,43(7):384−392. [SHEN Jiasen, SU Yongchang, CHEN Xiaoting, et al. Study on in vitro stability and antioxidant activity of ACE inhibitory peptide from Gracilaria lemaneiformis[J]. Science and Technology of Food Industry,2022,43(7):384−392.

    SHEN Jiasen, SU Yongchang, CHEN Xiaoting, et al. Study on in vitro stability and antioxidant activity of ACE inhibitory peptide from Gracilaria lemaneiformis[J]. Science and Technology of Food Industry, 2022, 43(7): 384-392.
    [21] 陈荣义. 茶多酚的提取纯化及其改性的研究[D]. 成都: 四川大学, 2005

    CHEN Rongyi. Study on extraction, purification and modification of tea polyphenols[D]. Chengdu: Sichuan University, 2005.
    [22] 马荣锴. 大孔树脂纯化菥蓂水提物黄酮的研究[D]. 南宁: 广西大学, 2012

    MA Rongkai. Study on the purification of flavonoids from water extract of molaria by microporous resin[D]. Nanning: Guangxi University, 2012.
    [23] KALAM S, ABUKHAMSIN S A, KAMAL M S, et al. Surfactant adsorption isotherms: A review[J]. ACS Omega,2021,6(48):32342−32348. doi:  10.1021/acsomega.1c04661
    [24] HU W Z, HOU M Y, FENG K. Adsorption kinetics and isotherms of flavonoids from Pteris esquiroliion macroporous resin[J]. Indian Journal of Pharmaceutical Sciences,2019,81(1):S9−S10.
    [25] 邢俊红. 花生壳多酚的提取工艺及活性研究[D]. 大连: 大连工业大学, 2015

    XING Junhong. Study on the extraction technology and activity of polyphenols from peanut shells[D]. Dalian: Dalian Polytechnic University, 2015.
    [26] 任晓婷. 猕猴桃皮渣多酚提取、纯化及其成分分析[D]. 太原: 山西大学, 2017

    REN Xiaoting. Kiwi peel residue polyphenol extraction, purification, and component analysis[D]. Taiyuan: Shanxi University, 2017.
    [27] 王力. 适合工业化制备茶叶儿茶素EGCG的方法及提高EGCG生物利用度的研究[D]. 无锡: 江南大学, 2021

    WANG Li. A method suitable for industrial preparation of tea catechin EGCG and study on improving the bioavailability of EGCG[D]. Wuxi: Jiangnan University, 2021.
    [28] 高凝轩. 黑果腺肋花楸多酚提取纯化工艺及其抗氧化活性与稳定性研究[D]. 沈阳: 沈阳农业大学, 2017

    GAO Ningxuan. Study on the extraction and purification process of polyphenols from rowan nigra and study on their antioxidant activity and stability[D]. Shenyang: Shenyang Agricultural University, 2017.
    [29] 高婷. 葡多酚的提取、纯化工艺及抗氧化性研究[D]. 长沙: 中南大学, 2013

    GAO Ting. Extraction and purification process and antioxidant study of gluc polyphenols[D]. Changsha: Central South University, 2013.
    [30] 陈琳. EGCG制备及其对小麦淀粉糊化和回生性质的影响研究[D]. 杭州: 浙江大学, 2018

    CHEN Lin. Preparation of EGCG and its effect on gelatinization and retrogradation of wheat starch[D]. Hangzhou: Zhejiang University, 2018.
    [31] 李洋. 微波—超声耦合双水相提取、树脂纯化茶多酚工艺研究[D]. 赣州: 江西理工大学, 2018

    LI Yang. Study on microwave-ultrasonic coupled aqueous phase extraction and resin purification of tea polyphenols[D]. Ganzhou: Jiangxi University of Science and Technology, 2018.
    [32] 巫永华, 刘恩岐, 张建萍, 等. 山楂叶多酚的纯化及其抗氧化特性与组分分析[J]. 食品与发酵工业,2020,46(2):165−172. [WU Yonghua, LIU Enqi, ZHANG Jianping, et al. Purification, antioxidant capacity and component analysis of hawthoen leaf polyphenols[J]. Food and Fermentation Industries,2020,46(2):165−172.

    WU Yonghua, LIU Enqi, ZHANG Jianping, et al. Purification, antioxidant capacity and component analysis of hawthoen leaf polyphenols[J]. Food and Fermentation Industries, 2020, 46(2): 165-172.
    [33] 张琪. 绿茶中茶多酚的提取分离及其对慢性胃炎大鼠胃粘膜的保护作用[D]. 西安: 陕西师范大学, 2015

    ZHANG Qi. Extraction and isolation of tea polyphenols in green tea and their protective effect on gastric mucosa in rats with chronic gastritis[D]. Xian: Shaanxi Normal University, 2015.
    [34] 郭雷, 郭家才, 郑洪伟. 花果山云雾茶中多酚和多糖的超声同步提取工艺[J]. 食品研究与开发,2017,38(16):33−39. [GUO Lei, GUO Jiacai, ZHENG Hongwei. Ultrasonic-assisted synchronous extraction process of tea polyphenols and polysaccharides from Huaguoshan Yunwu tea[J]. Food Research and Development,2017,38(16):33−39. doi:  10.3969/j.issn.1005-6521.2017.16.008

    GUO Lei, GUO Jiacai, ZHENG Hongwei. Ultrasonic-assisted synchronous extraction process of tea polyphenols and polysaccharides from Huaguoshan Yunwu tea[J]. Food Research and Development, 2017, 38(16): 33-39. doi:  10.3969/j.issn.1005-6521.2017.16.008
    [35] BOUCHEFFA S, SOBHI W, ATTOUI A, et al. Effect of the main constituents of Pistacia lentiscus leaves against the DPPH radical and xanthine oxidase: Experimental and theoretical study[J]. Journal of Biomolecular Structure and Dynamics,2021,39:11−15.
    [36] 喻铭佳, 索化夷. 巫山茶多酚提取物体外抗氧化活性研究[J]. 食品安全质量检测学报,2021,12(14):5822−5827. [YU Mingjia, SUO Huayi. Study on the in vitro antioxidant activity of the Wushan tea polyphenol extract[J]. Journal of Food Safety and Quality,2021,12(14):5822−5827.

    YU Mingjia, SUO Huayi. Study on the in vitro antioxidant activity of the Wushan tea polyphenol extract[J]. Journal of Food Safety and Quality, 2021, 12(14): 5822-5827.
    [37] JAGDEO J, KURTTI A, HERNANDEZ S, et al. Novel vitamin C and E and green tea polyphenols combination serum improves photoaged facial skin[J]. Journal of Drugs in Dermatology,2021,20(9):996−1003. doi:  10.36849/JDD.5818
    [38] YIN Zhiya, ZHENG Ting, HO Chitang, et al. Improving the stability and bioavailability of tea polyphenols by encapsulations: A review[J]. Food Science and Human Wellness,2022,11(3):537−556. doi:  10.1016/j.fshw.2021.12.011
  • 加载中
图(13) / 表(7)
计量
  • 文章访问数:  36
  • HTML全文浏览量:  18
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-09-15
  • 网络出版日期:  2023-05-22
  • 刊出日期:  2023-07-01

目录

    /

    返回文章
    返回