Optimization of Purification of Tea Polyphenols with Macroporous Adsorption Resin and Research of Their Antioxidant Activity
-
摘要: 为优化大孔吸附树脂纯化茶多酚的最佳工艺条件,通过对比14种不同类型大孔吸附树脂的静态吸附-解吸特性,在筛选出适宜的树脂型号后,利用单因素与响应面试验确定最佳提纯工艺要求,并进一步考察了树脂的重复使用和再生次数。同时,以VC为对照采用体外实验考察纯化前、后茶多酚的抗氧化活性。结果表明,LX-8树脂对茶多酚的吸附-解吸效果最好,可重复使用5次、再生6次。其最佳纯化工艺条件:100 mL浓度为6.4 mg/mL,pH5.4的茶汤以1.0 mL/min流速上样至LX-8树脂后,经180 mL 76%乙醇溶液以1.0 mL/min流速解吸,在该条件下茶多酚的回收率为86.9%,纯度为74.6%。体外抗氧化活性试验结果表明,纯化后茶多酚的总抗氧化能力、清除DPPH·和·OH的能力均有显著性增加,且随着浓度的增大,其抗氧化能力增强,其总抗氧化能力(1 mg/mL)为80.59 U/mL,对DPPH·和·OH清除能力的IC50值分别为0.0326和0.4167 mg/mL。虽然低于VC的抗氧化活性,但均高于纯化前的茶多酚,说明通过该工艺,能够显著提高茶多酚的抗氧化活性,且当纯化后茶多酚浓度为1 mg/mL时,其DPPH·清除率已经接近VC的DPPH·清除率,本研究为茶多酚的工业化生产和开发利用提供理论参考。Abstract: To optimize the technical condition for purification of tea polyphenols with macroporous adsorption resin, the static adsorption and desorption performance of macroporous adsorption resin of fourteen types were compared to select the best type of resin. The optimal purification process conditions were determined by single factor and response surface experiments, and the reuse and regeneration times of the resin were further investigated. Meanwhile, the antioxidant activities of tea polyphenols before and after purification were investigated by in vitro experiments with VC as the control. The results showed that LX-8 resin had the best adsorption-desorption effect on tea polyphenols, which could be reused 5 times and regenerated 6 times. The optimum purification conditions were as below: The sample concentration of 6.4 mg/mL, the sample pH value of 5.4, the loading volume of 100 mL, the sample flow rate of 1.0 mL/min, ethanol concentration of 76% eluting agent volume of 180 mL, and desorption rate of 1.0 mL/min. Under these conditions, the recovery rate of tea polyphenols was 86.9% and the purity was 74.6%. In vitro antioxidant activity studies revealed that the total antioxidant capacity, DPPH· scavenging capacity and ·OH scavenging capacity of the purified tea polyphenols were significantly increased. And with the increase of polyphenol concentration, its antioxidant capacity enhanced. The total antioxidant capacity of the purified tea polyphenol (1 mg/mL) was 80.59 U/mL. The IC50 of the purified tea polyphenol on scavenging ability of DPPH· and ·OH were 0.0326 and 0.4167 mg/mL respectively. Although the antioxidant activity of pure extract was lower than that of VC, it was higher than that of crude extract, indicating that the antioxidant activity of tea polyphenols could be significantly improved by this process, and when the concentration of the purified tea polyphenol was 1 mg/mL, its DPPH· scavenging rate was close to that of VC. This research provided a theoretical reference for the industrial production and utilization of tea polyphenols.
-
Key words:
- tea polyphenols /
- macroporous adsorption resin /
- purification /
- regeneration /
- antioxidant activity
-
表 1 Box-Behnken试验设计因素与水平
Table 1. Factors and levels of Box-Behnken experiments design
水平 A pH B茶汤浓度(mg/mL) C 乙醇浓度(%) −1 4.37 5.16 60 0 5.37 6.24 70 1 6.37 7.32 80 表 2 14种大孔树脂的静态吸附和解吸效果
Table 2. Static adsorption and desorption effects of 14 macroporous resins
树脂型号 极性 吸附量(mg/g) 吸附率(%) 解吸量(mg/g) 解吸率(%) LX-B14 极性 39.20±0.55b 90.85±1.27a 28.52±0.65b 72.77±0.86ef XDA-8G 极性 21.86±0.23f 68.80±0.72b 17.26±0.29d 78.95±1.98d LX-8 极性 33.09±0.27c 90.65±0.74a 29.87±0.69a 90.26±1.92ab SP207 极性 25.83±0.26e 58.20±0.59d 16.89±0.93d 65.39±3.59g D301 极性 41.76±0.30a 90.69±0.66a 11.46±0.87e 27.44±1.88h HZW635 极性 26.59±0.69de 68.07±1.78b 20.87±0.50c 78.56±3.84d HZW636 极性 27.01±0.80d 62.64±1.86c 20.35±0.97c 75.46±5.88de ADS-17 中极性 1.90±0.53h 3.42±0.96e 1.54±0.44f 81.12±1.97cd HPD450 中极性 2.90±0.82gh 4.69±1.32e 1.96±0.52f 67.84±1.72fg AB-8 弱极性 2.35±0.48gh 4.87±0.98e 2.11±0.38f 90.26±4.24ab X-5 非极性 2.66±0.37gh 4.39±0.62e 2.04±0.32f 76.72±2.23de D101 非极性 2.24±0.41h 4.83±0.89e 1.92±0.44f 85.09±4.57bc H103 非极性 3.33±0.86g 5.17±1.32e 2.10±0.46f 63.65±2.83g HPD100 非极性 2.89±0.56gh 5.32±1.02e 2.64±0.55f 91.02±1.83a 注:同列不同字母表示差异显著(P<0.05)。 表 3 不同温度下的Langmuir模型拟合参数
Table 3. Fitting parameters of Langmuir models at different temperatures
表 4 不同温度下的Freundlich模型拟合参数
Table 4. Fitting parameters of Freundlich models at different temperatures
温度(℃) Freundlich方程 KF 1/n R2 25 lnqe=0.4806InCe−3.4963 0.03 0.4806 0.9831 35 lnqe=0.5678InCe−3.2386 0.04 0.5678 0.9805 45 lnqe=0.6557InCe−2.814 0.06 0.6557 0.9235 表 5 吸附动力学模型拟合参数
Table 5. Fitting parameters of adsorption kinetics models
拟合模型 拟合方程 qe k R2 一级动力学 ln(qe-qt)=−0.3252t+1.2 3.32 0.325 0.846 二级动力学 t/qt=0.1285t+2.2022 7.78 0.008 0.9996 表 6 响应面试验设计及结果
Table 6. Design and results of response surface experiment
试验号 A pH B 茶汤浓度 C 乙醇浓度 Y 回收率(%) 1 1 0 1 82.6±0.26 2 0 0 0 86.4±0.17 3 −1 0 −1 80.4±0.10 4 0 0 0 87.5±0.29 5 1 −1 0 72.8±0.26 6 1 0 −1 74.7±0.30 7 −1 0 1 81.2±0.44 8 −1 −1 0 77.9±0.40 9 0 1 1 83.8±0.46 10 0 0 0 87.2±0.17 11 0 −1 1 81.6±0.30 12 0 −1 −1 79.2±0.10 13 0 1 −1 82.7±0.20 14 1 1 0 77.4±0.36 15 −1 1 0 78.3±0.17 16 0 0 0 87.6±0.30 17 0 0 0 87.9±0.10 表 7 回归模型方差分析
Table 7. Variance analysis of regression model
方差来源 平方和 自由度 均方 F值 P值 显著性 模型 341.23 9 37.91 51.93 < 0.0001 ** A 13.26 1 13.26 18.16 0.0037 ** B 14.31 1 14.31 19.60 0.0031 ** C 18.60 1 18.60 25.48 0.0015 ** AB 4.41 1 4.41 6.04 0.0436 * AC 12.60 1 12.60 17.26 0.0043 ** BC 0.42 1 0.42 0.58 0.4717 A2 173.00 1 173.00 236.97 < 0.0001 ** B2 78.22 1 78.22 107.13 < 0.0001 ** C2 5.91 1 5.91 8.10 0.0248 * 残差 5.11 7 0.73 失拟项 3.80 3 1.27 3.88 0.1118 不显著 纯误差 1.31 4 0.33 总和 346.34 16 R2=0.9852 R²adj=0.9663 注:“*”表示对结果影响差异显著(P<0.05);“**”表示对结果影响差异极显著(P<0.01)。 -
[1] 杨新, 陈莉, 卢红梅, 等. 茶多酚提取与纯化方法及其功能活性研究进展[J]. 新宝登录入口(中国)有限公司,2019,40(5):322−328, 332. [YANG Xin, CHEN Li, LU Hongmei, et al. Research progress on extraction and purification methods of tea polyphenols and its functional activities[J]. Science and Technology of Food Industry,2019,40(5):322−328, 332.YANG Xin, CHEN Li, LU Hongmei, et al. Research progress on extraction and purification methods of tea polyphenols and its functional activities[J]. Science and Technology of Food Industry, 2019, 40(5): 322-328, 332. [2] 丁东晴, 申懿玲, 杜晶, 等. 黑茶多酚提取工艺及对鲜切苹果品质影响[J]. 粮食与油脂,2022,35(4):129−134. [DING Dongqing, SHEN Yiling, DU Jing, et al. Effects of extraction technology of dark tea polyphenols on quality of fresh-cut apple[J]. Cereals and Oils,2022,35(4):129−134. doi: 10.3969/j.issn.1008-9578.2022.04.032DING Dongqing, SHEN Yiling, DU Jing, et al. Effects of extraction technology of dark tea polyphenols on quality of fresh-cut apple[J]. Cereals and Oils, 2022, 35(4): 129-134. doi: 10.3969/j.issn.1008-9578.2022.04.032 [3] 洪思慧, 张涛麟. 茶多酚提取专利技术综述[J]. 江西化工,2021,37(3):69−72. [HONG Sihui, ZHANG Taolin. Review of patented technology of tea polyphenol extraction[J]. Jiangxi Chemical Industry,2021,37(3):69−72. doi: 10.3969/j.issn.1008-3103.2021.03.020HONG Sihui, ZHANG Taolin. Review of patented technology of tea polyphenol extraction[J]. Jiangxi Chemical Industry, 2021, 37(3): 69-72. doi: 10.3969/j.issn.1008-3103.2021.03.020 [4] ZHANG Yuting, CHENG Lu, LIU Yanan, et al. Omics analyses of intestinal microbiota and hypothalamus clock genes in circadian disturbance model mice fed with green tea polyphenols[J]. Journal of Agricultural and Food Chemistry,2022,70(6):1890−1901. doi: 10.1021/acs.jafc.1c07594 [5] LUO Yue, ZHANG Jianan, TANG Hochi, et al. Management of Maillard reaction-derived reactive carbonyl species and advanced glycation end products by tea and tea polyphenols[J]. Food Science and Human Wellness,2022,11(3):557−567. doi: 10.1016/j.fshw.2021.12.012 [6] HONG Mengyu, CHENG Lu, LIU Yanan, et al. A natural plant source-tea polyphenols, a potential drug for improving immunity and combating virus[J]. Nutrients,2022,14(3):550−565. doi: 10.3390/nu14030550 [7] TRUONG V, JEONG W. Antioxidant and anti-inflammatory roles of tea polyphenols in inflammatory bowel diseases[J]. Food Science and Human Wellness,2022,11(3):502−511. doi: 10.1016/j.fshw.2021.12.008 [8] 高海荣, 王亚鑫, 谢晨, 等. XDA-5大孔树脂分离茶叶中茶多酚工艺优化[J]. 中国食品添加剂,2019,30(11):67−72. [GAO Hairong, WANG Yaxin, XIE Chen, et al. Optimization of separation for tea polyphenols by XDA-5 macroporous resin[J]. China Food Additives,2019,30(11):67−72.GAO Hairong, WANG Yaxin, XIE Chen, et al. Optimization of separation for tea polyphenols by XDA-5 macroporous resin[J]. China Food Additives, 2019, 30(11): 67-72. [9] 吴婕, 宫江宁. 大孔树脂纯化甜茶多酚及其对α-葡萄糖苷酶抑制活性和DPPH·抗氧化性的研究[J]. 中国农业科技导报,2021,23(6):113−119. [WU Jie, GONG Jiangning. Purification of polyphenols from sweet tea by the microporous resins and its inhibitory activity on α-glucosidase and DPPH·[J]. Journal of Agricultural Science and Technology,2021,23(6):113−119.WU Jie, GONG Jiangning. Purification of polyphenols from sweet tea by the microporous resins and its inhibitory activity on α-glucosidase and DPPH·[J]. Journal of Agricultural Science and Technology, 2021, 23(6): 113-119. [10] 曹雪文. 大孔树脂对茶多酚提取纯化及茶多酚抗氧化性能研究[D]. 赣州: 江西理工大学, 2020CAO Xuewen. Study on the extraction and purification of tea polyphenols by macroporous resin and the antioxidant properties of tea polyphenols[D]. Ganzhou: Jiangxi University of Science and Technology, 2020. [11] 欧淑琼, 唐倩, 李媛, 等. 茶树花中多酚浸提工艺的优化研究[J]. 茶叶通讯,2020,47(3):467−471. [OU Shuqiong, TANG Qian, LI Yuan, et al. Optimization of the extraction process of polyphenols from tea flower[J]. Journal of Tea Communication,2020,47(3):467−471.OU Shuqiong, TANG Qian, LI Yuan, et al. Optimization of the extraction process of polyphenols from tea flower[J]. Journal of Tea Communication, 2020, 47(3): 467-471. [12] 蓝梧涛. 油茶叶多酚提取纯化及稳定性、抗氧化活性的研究[D]. 广州: 华南农业大学, 2019LAN Wutao. Study on extraction, purification, stability and antioxidant activity of polyphenols from Camellia oleifera[D]. Guangzhou: South China Agricultural University, 2019. [13] 张沛, 吴楠, 宋志军, 等. 响应面法优化大孔树脂纯化黄芪毛蕊异黄酮工艺[J]. 新宝登录入口(中国)有限公司,2021,42(10):209−214. [ZHANG Pei, WU Nan, SONG Zhijun, et al. Purification of calycosin from Astragalus membranceus with macroporous resins by response surface analysis[J]. Science and Technology of Food Industry,2021,42(10):209−214.ZHANG Pei, WU Nan, SONG Zhijun, et al. Purification of calycosin from Astragalus membranceus with macroporous resins by response surface analysis[J]. Science and Technology of Food Industry, 2021, 42(10): 209-214. [14] BAI Y D, MA J, ZHU W F, et al. Highly selective separation and purification of chicoric acid from echinacea purpurea by quality control methods in macroporous adsorption resin column chromatography[J]. J Sep Sci,2019,42(5):1027−1036. [15] ZHANG L, ZHENG D, ZHANG Q F. Purification of total flavonoids from Rhizoma Smilacis Glabrae through cyclodextrin-assisted extraction and resin adsorption[J]. Food Sci Nutr,2019,7(2):449−456. doi: 10.1002/fsn3.809 [16] 沈志伟, 方芳, 龚云麒, 等. 以曲札茋苷为评价指标的大孔树脂再生工艺优化[J]. 中国民族民间医药,2019,28(8):45−48. [SHEN Zhiwei, FANG Fan, GONG Yunqi, et al. Optimization of regeneration process of macroporous resin with Quzhazhigan as evaluation index[J]. Chinese Journal of Ethnomedicine and Ethnopharmacy,2019,28(8):45−48. doi: 10.3969/j.issn.1007-8517.2019.8.zgmzmjyyzz201908013SHENG Zhiwei, FANG Fan, GONG Yunqi, et al. Optimization of regeneration process of macroporous resin with Quzhazhigan as evaluation index[J]. Chinese Journal of Ethnomedicine and Ethnopharmacy, 2019, 28(8): 45-48. doi: 10.3969/j.issn.1007-8517.2019.8.zgmzmjyyzz201908013 [17] 田富林, 黄文晶, 张驰, 等. HPD600型大孔树脂纯化麦麸多酚及其抗氧化活性和定性分析[J]. 食品与机械,2022,38(5):173−178,242. [TIAN Fulin, HUANG Wenjing, ZHANG Chi, et al. Antioxidant activity and qualitative analysis of wheat bran polyphenols purified using HPD600 macroporous resin[J]. Food and Machinery,2022,38(5):173−178,242.TIAN Fulin, HUANG Wenjing, ZHANG Chi, et al. Antioxidant activity and qualitative analysis of wheat bran polyphenols purified using HPD600 macroporous resin[J]. Food and Machinery, 2022, 38(5): 173-178, 242. [18] FATIHA E B, CLOTILDE N, LI L, et al. A new colorimetric DPPH radical scavenging activity method: Comparison with spectrophotometric assay in some medicinal plants used in moroccan pharmacopoeia[J]. Pharmaceutical Fronts,2022,4(2):89−102. [19] 谢雨寻, 叶有明, 李龙越, 等. 茶酒糟中茶多酚提取工艺优化及其抗氧化活性的研究[J]. 中国酿造,2022,41(2):204−209. [XIE Yuxun, YE Youming, LI Longyue, et al. Optimization of extraction process and antioxidant activity of tea polyphenols from tea distiller's grains[J]. China Brewing,2022,41(2):204−209.XIE Yuxun, YE Youming, LI Longyue, et al. Optimization of extraction process and antioxidant activity of tea polyphenols from tea distiller's grains[J]. China Brewing, 2022, 41(2): 204-209. [20] 沈嘉森, 苏永昌, 陈晓婷, 等. 龙须菜ACE抑制肽的体外稳定性和抗氧化活性研究[J]. 新宝登录入口(中国)有限公司,2022,43(7):384−392. [SHEN Jiasen, SU Yongchang, CHEN Xiaoting, et al. Study on in vitro stability and antioxidant activity of ACE inhibitory peptide from Gracilaria lemaneiformis[J]. Science and Technology of Food Industry,2022,43(7):384−392.SHEN Jiasen, SU Yongchang, CHEN Xiaoting, et al. Study on in vitro stability and antioxidant activity of ACE inhibitory peptide from Gracilaria lemaneiformis[J]. Science and Technology of Food Industry, 2022, 43(7): 384-392. [21] 陈荣义. 茶多酚的提取纯化及其改性的研究[D]. 成都: 四川大学, 2005CHEN Rongyi. Study on extraction, purification and modification of tea polyphenols[D]. Chengdu: Sichuan University, 2005. [22] 马荣锴. 大孔树脂纯化菥蓂水提物黄酮的研究[D]. 南宁: 广西大学, 2012MA Rongkai. Study on the purification of flavonoids from water extract of molaria by microporous resin[D]. Nanning: Guangxi University, 2012. [23] KALAM S, ABUKHAMSIN S A, KAMAL M S, et al. Surfactant adsorption isotherms: A review[J]. ACS Omega,2021,6(48):32342−32348. doi: 10.1021/acsomega.1c04661 [24] HU W Z, HOU M Y, FENG K. Adsorption kinetics and isotherms of flavonoids from Pteris esquiroliion macroporous resin[J]. Indian Journal of Pharmaceutical Sciences,2019,81(1):S9−S10. [25] 邢俊红. 花生壳多酚的提取工艺及活性研究[D]. 大连: 大连工业大学, 2015XING Junhong. Study on the extraction technology and activity of polyphenols from peanut shells[D]. Dalian: Dalian Polytechnic University, 2015. [26] 任晓婷. 猕猴桃皮渣多酚提取、纯化及其成分分析[D]. 太原: 山西大学, 2017REN Xiaoting. Kiwi peel residue polyphenol extraction, purification, and component analysis[D]. Taiyuan: Shanxi University, 2017. [27] 王力. 适合工业化制备茶叶儿茶素EGCG的方法及提高EGCG生物利用度的研究[D]. 无锡: 江南大学, 2021WANG Li. A method suitable for industrial preparation of tea catechin EGCG and study on improving the bioavailability of EGCG[D]. Wuxi: Jiangnan University, 2021. [28] 高凝轩. 黑果腺肋花楸多酚提取纯化工艺及其抗氧化活性与稳定性研究[D]. 沈阳: 沈阳农业大学, 2017GAO Ningxuan. Study on the extraction and purification process of polyphenols from rowan nigra and study on their antioxidant activity and stability[D]. Shenyang: Shenyang Agricultural University, 2017. [29] 高婷. 葡多酚的提取、纯化工艺及抗氧化性研究[D]. 长沙: 中南大学, 2013GAO Ting. Extraction and purification process and antioxidant study of gluc polyphenols[D]. Changsha: Central South University, 2013. [30] 陈琳. EGCG制备及其对小麦淀粉糊化和回生性质的影响研究[D]. 杭州: 浙江大学, 2018CHEN Lin. Preparation of EGCG and its effect on gelatinization and retrogradation of wheat starch[D]. Hangzhou: Zhejiang University, 2018. [31] 李洋. 微波—超声耦合双水相提取、树脂纯化茶多酚工艺研究[D]. 赣州: 江西理工大学, 2018LI Yang. Study on microwave-ultrasonic coupled aqueous phase extraction and resin purification of tea polyphenols[D]. Ganzhou: Jiangxi University of Science and Technology, 2018. [32] 巫永华, 刘恩岐, 张建萍, 等. 山楂叶多酚的纯化及其抗氧化特性与组分分析[J]. 食品与发酵工业,2020,46(2):165−172. [WU Yonghua, LIU Enqi, ZHANG Jianping, et al. Purification, antioxidant capacity and component analysis of hawthoen leaf polyphenols[J]. Food and Fermentation Industries,2020,46(2):165−172.WU Yonghua, LIU Enqi, ZHANG Jianping, et al. Purification, antioxidant capacity and component analysis of hawthoen leaf polyphenols[J]. Food and Fermentation Industries, 2020, 46(2): 165-172. [33] 张琪. 绿茶中茶多酚的提取分离及其对慢性胃炎大鼠胃粘膜的保护作用[D]. 西安: 陕西师范大学, 2015ZHANG Qi. Extraction and isolation of tea polyphenols in green tea and their protective effect on gastric mucosa in rats with chronic gastritis[D]. Xian: Shaanxi Normal University, 2015. [34] 郭雷, 郭家才, 郑洪伟. 花果山云雾茶中多酚和多糖的超声同步提取工艺[J]. 食品研究与开发,2017,38(16):33−39. [GUO Lei, GUO Jiacai, ZHENG Hongwei. Ultrasonic-assisted synchronous extraction process of tea polyphenols and polysaccharides from Huaguoshan Yunwu tea[J]. Food Research and Development,2017,38(16):33−39. doi: 10.3969/j.issn.1005-6521.2017.16.008GUO Lei, GUO Jiacai, ZHENG Hongwei. Ultrasonic-assisted synchronous extraction process of tea polyphenols and polysaccharides from Huaguoshan Yunwu tea[J]. Food Research and Development, 2017, 38(16): 33-39. doi: 10.3969/j.issn.1005-6521.2017.16.008 [35] BOUCHEFFA S, SOBHI W, ATTOUI A, et al. Effect of the main constituents of Pistacia lentiscus leaves against the DPPH radical and xanthine oxidase: Experimental and theoretical study[J]. Journal of Biomolecular Structure and Dynamics,2021,39:11−15. [36] 喻铭佳, 索化夷. 巫山茶多酚提取物体外抗氧化活性研究[J]. 食品安全质量检测学报,2021,12(14):5822−5827. [YU Mingjia, SUO Huayi. Study on the in vitro antioxidant activity of the Wushan tea polyphenol extract[J]. Journal of Food Safety and Quality,2021,12(14):5822−5827.YU Mingjia, SUO Huayi. Study on the in vitro antioxidant activity of the Wushan tea polyphenol extract[J]. Journal of Food Safety and Quality, 2021, 12(14): 5822-5827. [37] JAGDEO J, KURTTI A, HERNANDEZ S, et al. Novel vitamin C and E and green tea polyphenols combination serum improves photoaged facial skin[J]. Journal of Drugs in Dermatology,2021,20(9):996−1003. doi: 10.36849/JDD.5818 [38] YIN Zhiya, ZHENG Ting, HO Chitang, et al. Improving the stability and bioavailability of tea polyphenols by encapsulations: A review[J]. Food Science and Human Wellness,2022,11(3):537−556. doi: 10.1016/j.fshw.2021.12.011 -