Research Progress on the Regulation of Magnetic Field on the Growth and Development of Filamentous Fungi and the Synthesis of Metabolites
-
摘要: 磁场作为一种普遍存在的环境因子,影响着微生物的生长及代谢。丝状真菌是一类重要的异养型真核生物,在食品工业和生物医药领域有广泛应用。目前,采用磁场处理丝状真菌已成为工业重要研究目标,而红曲霉、黑曲霉和黄曲霉是丝状真菌常用的典型菌种。本文分别介绍了磁场调控红曲霉、黑曲霉、黄曲霉等丝状真菌生长及代谢的研究进展,通过不同磁场类型、作用时间、磁场强度等多种磁场参数分析三种丝状真菌磁场磁效应,阐述了磁场对三种典型丝状真菌的生长发育及其代谢物影响规律和代谢关系。探讨了磁场多方面多层次调控丝状真菌代谢产物的研究思路,下一步将展开说明磁场对丝状真菌的菌丝体形态结构、酶结构变化以及转录组学的作用机制,为探明磁场调控丝状真菌代谢产物合成机制提供参考,同时为丝状真菌的综合利用和开发提供理论基础。Abstract: Magnetic field, as a ubiquitous environmental factor, affects the growth and metabolism of microorganisms. Filamentous fungi are important heterotrophic eukaryotes, which are widely used in food industry and biomedical field. At present, magnetic field treatment of filamentous fungi has become an important research target in industry, and Monascus, Aspergillus niger and Aspergillus flavus are typical strains commonly used by filamentous fungi. This paper introduces the research progress of magnetic field regulating the growth and metabolism of Monascus, Aspergillus niger, Aspergillus flavus and other filamentous fungi, analyzes the magnetic field effect of three kinds of filamentous fungi through different magnetic field types, action time, magnetic field intensity and other magnetic field parameters, and expounds the rule of influence of magnetic field on the growth and development of three typical filamentous fungi and their metabolites and metabolic relationship. The research idea of magnetic field regulating filamentous fungi metabolites in many aspects and at multiple levels is discussed. The next step will be to explain the mechanism of magnetic field on filamentous fungi mycelia morphology, enzyme structure changes and transcriptomics, which will provide a reference for exploring the mechanism of magnetic field regulating filamentous fungi metabolites synthesis, and provide a theoretical basis for the comprehensive utilization and development of filamentous fungi.
-
Key words:
- magnetic field /
- filamentous fungi /
- growth and development /
- metabolites /
- research progress
-
表 1 磁场对红曲霉生长发育及代谢产物合成的影响
Table 1. Effect of magnetic field on the growth and development of Monascus and the synthesis of its metabolites
红曲霉 磁场影响效应 参考文献 生长发育 最适磁场强度能促进红曲霉生长,但随磁场强度增大菌落直径有下降趋势。 韩红霞等[10] 不同磁场条件下作用有差异,在静磁场5 mT能抑制红曲霉生长。 Chen等[11] 在液态发酵条件下,低频交变磁场0.6 mT也能使红曲霉生物量增加。 邓光武等[12] 磁场对红曲霉生物量促进的同时也对代谢产物有促进作用。 万云雷等[13] 红曲霉在其他条件下生长和代谢受抑制,利用磁场能恢复被抑制部分。 Zhou等[15] 代谢产物 磁场能刺激或抑制红曲霉次生代谢产物合成。 Zhang等[20] 磁场强度不同,对其代谢产物产量效果差异,磁场强度为1.6 mT刺激色素和莫纳可林K产量增加较显著,同时抑制桔霉素产量产生。 Xiong等[23] 红曲霉作用的磁场处理时间不同,其红曲霉代谢产物产量存在差异性。 Liao等[21] 磁场在转录水平抑制桔霉素生物合成蛋白显著降低,刺激色素和莫纳可林K基因水平上升,引起有益代谢产生,抑制有害代谢产量。 Zhang等[30] 表 2 磁场对黑曲霉生长发育及代谢产物合成的影响
Table 2. Effect of magnetic field on the growth and development of Aspergillus niger and the synthesis of its metabolites
黑曲霉 磁场影响效应 参考文献 生长发育 黑曲霉受磁场作用取决暴露磁场和强度不同及黑曲霉所处营养状态。 Money等[33] 磁场可诱导黑曲霉代谢特性变化,使表层菌丝生长和分生孢子发生。 Villalpanda等[34] 磁场能刺激培养基中蔗糖代谢促使黑曲霉菌体生长和孢子产生。 Voina等[36] 静磁场对黑曲霉生长和活性受到抑制,其菌落较小和分生孢子呈链状且分散。 Mateescu等[39] 新宝登录入口(中国)有限公司磁场导致黑曲霉孢子壁的破坏,引起对生长有抑制效果。 许喜林等[41] 代谢产物 磁场引起黑曲霉细胞内外电流的变化,刺激分生孢子,导致其产酶含量变化。 Fiedurek[43] 磁场能促进黑曲霉酶活性,也随暴露时间增加而酶活性增加。 Gao等[45] 同时磁场也能抑制黑曲霉生长,导致产量降低,同时抑制酶活性。 Aboneima等[40] 磁场类型导致影响差异,振荡磁场抑制作用比静磁场更为强烈。 Abdelhameed等[52] 磁场从转录水平上能刺激黑曲霉菌体生长代谢有关的基因表达上调,从而导致酶活性的变化。 Potenza等[47] 表 3 磁场对黄曲霉生长发育及代谢产物合成的影响
Table 3. Effect of magnetic field on the growth and development of Aspergillus flavus and the synthesis of its metabolites
黄曲霉 磁场影响效应 参考文献 生长发育 磁场可以改变黄曲霉细胞膜上的结合钙离子,使细胞膜稳定性改变,造成其生长起差异性。 Kadhum[58] 磁场能抑制黄曲霉生长,随磁场强度增加和暴露时间延长而抑制更显著。 Akinyele等[56] 南北极磁场对黄曲霉的生长有磁作用,南极磁场诱导黄曲霉的生长加速,反之,北极磁场抑制黄曲霉生长。 Ahmad等[57] 代谢产物 磁场对黄曲霉生长和活力有抑制作用,导致黄曲霉毒素代谢发生改变。 Kadhum[58] 磁场对于不同培养基上的黄曲霉毒素,其作用效果不同。 Rajab等[59] 磁场频率不同,黄曲霉毒素抑制作用具有显著差异。 Eisa等[60] 南北极磁场影响黄曲霉毒素,南极磁场诱导钙信号转导时刺激黄曲霉毒素增加,北极磁场改变黄曲霉细胞膜金属离子变化,使毒素减少甚至失活。 Ahmad等[57] 利用磁场对食品进行杀菌,消除黄曲霉毒素B1\B2和G1\G2形成。 Nuroğlu等[62] -
[1] QIN S Y, YIN H, YANG C L, et al. A magnetic protein biocompass[J]. Nature Materials,2016,15(2):217−226. doi: 10.1038/nmat4484 [2] ZHANG X, YAREMA K, XU A. Impact of static magnetic field (SMF) on microorganisms, plants and animals[J]. Biological Effects of Static Magnetic Fields,2017:133−172. [3] CAO Y P, YANG X L, WANG C T, et al. Effect of nonionic surfactant Brij 35 on morphology, cloud point, and pigment stability in Monascus extractive fermentation[J]. Journal of the Science of Food and Agriculture,2020,100(12):4521−4530. doi: 10.1002/jsfa.10493 [4] 周康熙, 陈颖, 倪莉. 红曲霉分离纯化、分类和鉴定研究进展[J]. 中国酿造,2021,40(1):7−13. [ZHOU K X, CHEN Y, NI L. Research progress in isolation, purification, classification and identification of Monascus[J]. China Brewing,2021,40(1):7−13. doi: 10.11882/j.issn.0254-5071.2021.01.002ZHOU K X, CHEN Y, NI L. Research progress in isolation, purification, classification and identification of Monascus[J]. China Brewing, 2021, 40(1): 7-13. doi: 10.11882/j.issn.0254-5071.2021.01.002 [5] 代文婷, 吴宏, 郭安民. 红曲霉在酿酒行业中的应用研究进展[J]. 食品与发酵工业,2018,44(1):280−284. [DAI W T, WU H, GUO A M. Research progress of Monascus application in brewing industry[J]. Food and Fermentation Industries,2018,44(1):280−284. doi: 10.13995/j.cnki.11-1802/ts.015497DAI W T, WU H, GUO A M. Research progress of Monascus application in brewing industry[J]. Food and Fermentation Industries, 2018, 44(1): 280-284. doi: 10.13995/j.cnki.11-1802/ts.015497 [6] HE J T, JIA M X, LI W, et al. Toward improvements for enhancement the productivity and color value of Monascus pigments: A critical review with recent updates[J]. Critical reviews in Food Science and Nutrition,2022,62(26):7139−7153. doi: 10.1080/10408398.2021.1935443 [7] ZHANG C, CHEN M X, ZANG Y M, et al. Effect of arginine supplementation on monacolin K yield of Monascus purpureus[J]. Journal of Food Composition and Analysis,2022,106:104−252. [8] SHI J, QIN X L, ZHAO Y R, et al. Strategies to enhance the production efficiency of Monascus pigments and control citrinin contamination[J]. Process Biochemistry,2022,117:19−29. doi: 10.1016/j.procbio.2022.03.003 [9] 李培睿, 张晓伟, 曹依曼. 红曲霉桔霉素的检测和控制方法研究进展[J]. 中国食品添加剂,2021,33(3):100−105. [LI P R, ZHANG X W, CAO Y M. Research progress on detection and control methods of Monascus citrinin[J]. China Food Additives,2021,33(3):100−105. doi: 10.19804/j.issn1006-2513.2021.03.017LI P R, ZHANG X W, CAO Y M. Research progress on detection and control methods of Monascus citrinin[J]. China Food Additives, 2021, 33(3): 100-105. doi: 10.19804/j.issn1006-2513.2021.03.017 [10] 韩红霞, 曾冬杰, 万云雷, 等. 低频磁场对紫红曲菌生理生化特性的影响[J]. 食品科技,2015,40(7):45−49. [HAN H X, ZENG D J, WAN Y L, et al. Effect of low frequency magnetic field on physiological and biochemical characteristics of Monascus purpureus[J]. Food Science and Technology,2015,40(7):45−49. doi: 10.13684/j.cnki.spkj.2015.07.010HAN H X, ZENG D J, WAN Y L, et al. Effect of low frequency magnetic field on physiological and biochemical characteristics of Monascus purpureus[J]. Food Science and Technology, 2015, 40(7): 45-49. doi: 10.13684/j.cnki.spkj.2015.07.010 [11] CHEN F H, YANG S Y, XIONG J, et al. Effect of static magnetic field on Monascus ruber M7 based on transcriptome analysis[J]. Journal of Fungi,2021,7(4):256. doi: 10.3390/jof7040256 [12] 邓光武, 夏帆, 王洁雅, 等. 低频交变磁场对红曲霉固态发酵生物量的影响[J]. 农业机械学报,2012,43(6):128−132. [DENG G W, XIA F, WANG J Y, et al. Effect of low frequency alternating magnetic field on solid state fermentation biomass of Monascus[J]. Transactions of the Chinese Society for Agricultural Machinery,2012,43(6):128−132. doi: 10.6041/j.issn.1000-1298.2012.06.024DENG G W, XIA F, WANG J Y, et al. Effect of low frequency alternating magnetic field on solid state fermentation biomass of Monascus[J]. Transactions of the Chinese Society for Agricultural Machinery, 2012, 43(6): 128-132. doi: 10.6041/j.issn.1000-1298.2012.06.024 [13] 万云雷, 韩红霞, 李利, 等. 低频磁场对紫色红曲菌固态发酵产γ-氨基丁酸的影响[J]. 中国农业科技导报,2015,17(5):94−98. [WAN Y L, HAN H X, LI L, et al. Effect of low frequency magnetic field on γ-aminobutyric acid of Monascus purpureus in solid state fermentation[J]. Journal of Agricultural Science and Technology,2015,17(5):94−98.WAN Y L, HAN H X, LI L, et al. Effect of low frequency magnetic field on γ-aminobutyric acid of Monascus purpureus in solid state fermentation[J]. Journal of Agricultural Science and Technology, 2015, 17(5): 94-98. [14] WAN Y L, ZHANG J L, HAN H X, et al. Citrinin-producing capacity of Monascus purpureus in response to low-frequency magnetic fields[J]. Process Biochemistry,2017,53:25−29. doi: 10.1016/j.procbio.2016.11.009 [15] ZHOU H, YANG S, CHEN F. The magnetic receptor of Monascus ruber M7: Gene clone and its heterologous expression in Escherichia coli[J]. Frontiers in Microbiology,2020,11:11−12. [16] XIONG X Q, LIU Y B, ZHANG J L, et al. Mutational analysis of MpPhy reveals magnetoreception and photosensitivity involvement in secondary metabolites biosynthesis in Monascus purpureus[J]. Journal of Photochemistry and Photobiology B: Biology,2021,217:112−164. [17] CHEN S, SU D X, GAO M X, et al. A facile macroporous resin-based method for separation of yellow and orange Monascus pigments[J]. Food Science and Biotechnology,2021,30(4):545−553. doi: 10.1007/s10068-021-00892-1 [18] ZHANG C, ZHANG H, ZHU Q Q, et al. Overexpression of global regulator LaeA increases secondary metabolite production in Monascus purpureus[J]. Applied Microbiology and Biotechnology,2020,104(7):3049−3060. doi: 10.1007/s00253-020-10379-4 [19] 高梦祥, 夏帆, 胡秋冬. 交变磁场对啤酒酵母的生长促进效应[J]. 农业机械学报,2007(7):91−93. [GAO M X, XIA F, HU Q D, et al. Effect of alternating magnetic field on growth of beer yeast[J]. Transactions of the Chinese Society for Agricultural Machinery,2007(7):91−93. doi: 10.3969/j.issn.1000-1298.2007.07.025GAO M X, XIA F, HU X D, et al. Effect of alternating magnetic field on growth of beer yeast[J]. Transactions of the Chinese Society for Agricultural Machinery, 2007(7): 91-93. doi: 10.3969/j.issn.1000-1298.2007.07.025 [20] ZHANG J L, ZENG D J, XU C, et al. Effect of low-frequency magnetic field on formation of pigments of Monascus purpureus[J]. European Food Research and Technology,2015,240(3):577−582. doi: 10.1007/s00217-014-2358-x [21] LIAO Q, LIU Y B, ZHANG J L, et al. A low-frequency magnetic field regulates Monascus pigments synthesis via reactive oxygen species in M. purpureus[J]. Process Biochemistry,2019,86:16−24. doi: 10.1016/j.procbio.2019.08.009 [22] LIU Q P, XIE N N, HE Y, et al. MpigE, a gene involved in pigment biosynthesis in Monascus ruber M7[J]. Applied Microbiology and Biotechnology,2014,98(1):285−296. doi: 10.1007/s00253-013-5289-8 [23] XIONG X Q, ZHEN Z X, LIU Y B, et al. Low-frequency magnetic field of appropriate strengths changed secondary metabolite production and Na+ concentration of intracellular and extracellular Monascus purpureus[J]. Bioelectromagnetics,2020,41(4):289−297. doi: 10.1002/bem.22262 [24] HALTTUNEN T, SALMINEN S, TAHVONEN R. Rapid removal of lead and cadmium from water by specific lactic acid bacteria[J]. International Journal of Food Microbiology,2007,114(1):30−35. doi: 10.1016/j.ijfoodmicro.2006.10.040 [25] KUROKAWA H, ITO H, MATSUI H. Monascus purpureus induced apoptosis on gastric cancer cell by scavenging mitochondrial reactive oxygen species[J]. Journal of Clinical Biochemistry and Nutrition,2017,61(3):17−27. [26] HUANG J, LIAO N Q, LI H M. Linoleic acid enhance the production of moncolin K and red pigments in Monascus ruber by activating mokH and mokA, and by accelerating cAMP-PKA pathway[J]. International Journal of Biological Macromolecules,2018,109:950−954. doi: 10.1016/j.ijbiomac.2017.11.074 [27] PENG L, AISIKAER A, LIU S P, et al. Effects of Chinese medicines on monacolin K production and related genes transcription of Monascus ruber in red mold rice fermentation[J]. Food Science & Nutrition,2020,8(4):2134−2142. [28] HUANG Z B, ZHANG L J, GAO H, et al. Soybean isoflavones reduce citrinin production by Monascus aurantiacus Li AS3.4384 in liquid state fermentation using different media[J]. Journal of the Science of Food and Agriculture,2019,99(10):4772−4780. doi: 10.1002/jsfa.9723 [29] MAGRO M M, MORITZ D E, BONAIUTO E, et al. Citrinin mycotoxin recognition and removal by naked magnetic nanoparticles[J]. Food Chemistry,2016,203:505−512. doi: 10.1016/j.foodchem.2016.01.147 [30] ZHANG J L, LIU Y B, LI L, et al. iTRAQ-based quantitative proteomic analysis reveals changes in metabolite biosynthesis in Monascus purpureus in response to a low-frequency magnetic field[J]. Toxins,2018,10(11):440. doi: 10.3390/toxins10110440 [31] 陈美榕, 张梦薇, 刘舒雯, 等. 黑曲霉中生物合成赭曲霉毒素A的非核糖体肽合成酶基因的鉴定[J]. 菌物学报,2020,39(3):556−565. [CHEN M R, ZHANG M W, LIU S W, et al. Identification of nonribosomal peptide synthase gene for biosynthesis of ochratoxin A in Aspergillus niger[J]. Mycosystema,2020,39(3):556−565. doi: 10.13346/j.mycosystema.190275CHEN M R, ZHANG M W, LIU S W, et al. Identification of nonribosomal peptide synthase gene for biosynthesis of ochratoxin A in Aspergillus niger[J]. Mycosystema, 2020, 39(3): 556-565. doi: 10.13346/j.mycosystema.190275 [32] PATEL H, CHAPLA D, DIVECHA J, et al. Improved yield of α-L-arabinofuranosidase by newly isolated Aspergillus niger ADH-11 and synergistic effect of crude enzyme on saccharification of maize stover[J]. Bioresources and Bioprocessing,2015,2(1):1−14. doi: 10.1186/s40643-014-0030-8 [33] MONEY N P. Hyphal and mycelial consciousness: The concept of the fungal mind[J]. Fungal Biology,2021,125(4):257−259. doi: 10.1016/j.funbio.2021.02.001 [34] VILLALPANDA M A, ALFONSO S F B, MORALES E B. Quantification of superficial growth and the pigmentation of filamentous fungi by effect of oscillating magnetic field[J]. Revista CENIC Ciencias Biológicas,2022,53(2):126−139. [35] MANOLIU A, OPRICA L. The protein content in cellulolytic fungi Trichoderma viride and Chaetomium globosum exposed at static and electromagnetic fields[J]. Journal of Experimental and Molecular Biology, 2008, 9(3). [36] VOINA A, RADU E, CARAMITU A R, et al. Influences of 50 Hz electric fields on growth and multiplication of some microorganisms[J]. Journal of Sustainable Energy,2016,7(2):62−66. [37] ANAYA M, GÁMEZ E E, VALDÉS O, et al. Effect of the oscillating magnetic field on airborne fungal[J]. Archives of Microbiology,2021,203(5):2139−2145. doi: 10.1007/s00203-021-02193-x [38] 邢诒存, 周一帆. 低频磁场对微生物影响的探讨[J]. 海南师范学院学报,2001,14(4):34−39. [XING Y C, ZHOU Y F. Discussion on the effect of low frequency magnetic field on microorganisms[J]. Journal of Hainan Teachers College,2001,14(4):34−39.XING Y C, ZHOU Y F. Discussion on the effect of low frequency magnetic field on microorganisms[J]. Journal of Hainan Teachers College, 2001, 14(4): 34-39. [39] MATEESCU C, BURUNTEA N, STANCU N. Investigation of Aspergillus niger growth and activity in a static magnetic flux density field[J]. Romanian Biotechnological Letters,2011,16(4):6364−6368. [40] ABONEIMA S, METWALLY E M. Effect of extremely low frequency magnetic field in growth, CM case, electric conductivity and DNA of Aspergillus niger[J]. Egyptian Journal of Physics,2021,49(1):15−34. [41] 许喜林, 郭祀远, 李琳. 新宝登录入口(中国)有限公司磁场对微生物的作用[J]. 华南理工大学学报(自然科学版),2006,34(12):47−50. [XU X L, GUO S Y, LI L. Effect of dynamic magnetic field on microorganisms[J]. Journal of South China University of Technology (Natural Science Edition),2006,34(12):47−50. doi: 10.3321/j.issn:1000-565X.2006.12.010XU X L, GUO S Y, LI L. Effect of dynamic magnetic field on microorganisms[J]. Journal of South China University of Technology (Natural Science Edition), 2006, 34(12): 47-50. doi: 10.3321/j.issn:1000-565X.2006.12.010 [42] SUN X W, WU H F, ZHAO G H, et al. Morphological regulation of Aspergillus niger to improve citric acid production by chsC gene silencing[J]. Bioprocess and Biosystems Engineering,2018,41(7):1029−1038. doi: 10.1007/s00449-018-1932-1 [43] FIEDUREK J. Influence of a pulsed electric field on the spores and oxygen consumption of Aspergillus niger and its citric acid production[J]. Acta Biotechnologica,1999,19(2):179−186. doi: 10.1002/abio.370190214 [44] MAKAROV I O, KLYUEV D A, SMIRNOV V F, et al. Effect of low-frequency pulsed magnetic field and low-level laser radiation on oxidoreductase activity and growth of fungi-active destructors of polymer materials[J]. Microbiology,2019,88(1):72−78. doi: 10.1134/S0026261719010053 [45] GAO M X, ZHANG J L, FENG H. Extremely low frequency magnetic field effects on metabolite of Aspergillus niger[J]. Bioelectromagnetics,2011,32(1):73−78. doi: 10.1002/bem.20619 [46] ALI Z A, YAHYA A G I, JABIR A W S. The effect of static magnetic field on growth and biochemical indices of five fungal genera[J]. Journal of Biotechnology Research Center,2014,8(3):28−36. [47] POTENZA L, SALTARELLI R, POLIDORI E, et al. Effect of 300 mT static and 50 Hz 0.1 mT extremely low frequency magnetic fields onTuber borchii mycelium[J]. Canadian Journal of Microbiology,2012,58(10):1174−1182. doi: 10.1139/w2012-093 [48] TASKIN M, ESIM N, GENISEL M, et al. Enhancement of invertase production by Aspergillus niger OZ-3 using low-intensity static magnetic fields[J]. Preparative Biochemistry and Biotechnology,2013,43(2):177−188. doi: 10.1080/10826068.2012.713431 [49] YAVUZ H, ELEBI S S. Effects of magnetic field on activity of activated sludge in wastewater treatment[J]. Enzyme and Microbial Technology,2000,26(1):22−27. doi: 10.1016/S0141-0229(99)00121-0 [50] LIU M, GAO H, SHANG P, et al. Magnetic field is the dominant factor to induce the response of Streptomyces avermitilis in altered gravity simulated by diamagnetic levitation[J]. PLoS One,2017,6(10):e24697. [51] PEA C, BUITRAGO D, LUNA H. Influence of a low-frequency magnetic field on the growth of microorganisms in activated sludge[J]. Nature Environment and Pollution Technology,2019,18(2):587−592. [52] ABDELHAMEED A E. Growth rate inhibtion of some spoilage fungi of food by magnetic field[J]. Misr Journal of Agricultural Engineering,2014,31(1):299−308. doi: 10.21608/mjae.2014.100004 [53] 徐丹, 卫梦绮, 李亚俊, 等. 孜然精油对产毒黄曲霉的抑制活性研究[J]. 天然产物研究与开发,2018,30(9):1601−1607. [XU D, WEI M Q, LI Y J, et al. Study on inhibitory activity of cumin essential oil against Aspergillus flavus[J]. Natural Product Research and Development,2018,30(9):1601−1607. doi: 10.16333/j.1001-6880.2018.9.022XU D, WEI M Q, LI Y J, et al. Study on inhibitory activity of cumin essential oil against Aspergillus flavus[J]. Natural Product Research and Development, 2018, 30(9): 1601-1607. doi: 10.16333/j.1001-6880.2018.9.022 [54] WANG L, HE K Y, WANG X Q, et al. Recent progress in visual methods for aflatoxin detection[J]. Critical Reviews in Food Science and Nutrition,2021,62(28):1−18. [55] 赵颖, 李倩, 朱晓嫚, 等. 邻香兰素对黄曲霉生长的抑制作用研究[J]. 河南工业大学学报(自然科学版),2020,43(2):79−85. [ZHAO Y, LI Q, ZHU X M, et al. Study on the inhibitory effect of o-vanillin on the growth of Aspergillus flavus[J]. Journal of Henan University of Technology (Natural Science Edition),2020,43(2):79−85.ZHAO Y, LI Q, ZHU X M, et al. Study on the inhibitory effect of o-vanillin on the growth of Aspergillus flavus[J]. Journal of Henan University of Technology (Natural Science Edition), 2020, 43(2): 79-85. [56] AKINYELE B J, AKINKUNMI C O. Fungi associated with the spoilage of berry and their reaction to electromagnetic field[J]. Journal of Yeast and Fungal Research,2012,3(4):49−57. [57] AHMAD A M, YAHYA A G I, JABIR A W S. Effect of magnetic field energy on growth of Aspergillus flavus and aflatoxins production[J]. Al-Nahrain Journal of Science,2013,16(2):180−187. [58] KADHUM S I. Effect of magnetic field of both north and south pole on the growth and viability of the local isolate Aspergillus flavus sh1 and its capability for the production of aflatoxin[J]. Journal of Biotechnology Research Center,2013,7(1):14−20. doi: 10.24126/jobrc.2013.7.1.235 [59] RAJAB Z N, SALMAN H E. Using acetonitrile for extraction of aflatoxin from Aspergillus flavus under the effect of static magnetic field[J]. Annals of the Romanian Society for Cell Biology,2021,25(4):4795−4806. [60] EISA A, ALI F M, HABBA G M, et al. Pulsed electric field technology for checking aflatoxin production in cultures and corn grains[J]. Egypt J Phytopathol,2003,31:75−86. [61] DEVI I S, PARIMALA K, BHARATHI V, et al. Effect of sinusoidal electromagnetic field pretreatment on maize seed borne fungi[J]. Indian Journal of Plant Protection,2016,44(2):229−232. [62] NUROĞLU E, ÖZ E, BAKIRDERE S, et al. Evaluation of magnetic field assisted sun drying of food samples on drying time and mycotoxin production[J]. Innovative Food Science and Emerging Technologies,2019,52:237−243. doi: 10.1016/j.ifset.2019.01.004 -