Application of Physical Mutagenesis and High Throughput Screening Technology in the Selection of Probiotics
-
摘要: 野生型菌株活性较低,难以满足工业化需求,通过使用物理诱变方法可改善菌种性能,进而获得高产、优质菌株。同时需寻找快速、合适的筛选方法从突变文库中获得理想目标菌株。传统人工筛选及摇瓶培养成本高、耗时耗力,高通量筛选技术解决了这一难题。本文探讨了传统及新型物理诱变技术原理,对比了两类诱变技术的区别及阐述了其在益生菌选育中的应用。同时总结了各高通量筛选技术(微量滴定板筛选、荧光激活细胞分选、生物传感器的筛选、液滴微流控平台筛选及模式动物平台的筛选)的特点及其在益生菌筛选的相关应用。本文为后续降低筛选成本、提高筛选效率、获得高产理想目标菌株提供重要参考。Abstract: Wild-type strains hardly meet the current industrial demands due to low stability. The performance of microbial strains (high-yielding, high-quality strains) can be improved by using physical mutagenesis techniques. At the same time, high throughput screening methods and techniques can be used to quickly obtain ideal strains from the mutation library. However, traditional manual screening and shaker culture are high-cost, time-consuming, and laborious, and high-throughput screening technology can solve this problem. In this review, the applications of traditional and novel mutagenesis used for the improvement of probiotics are summarized, the principles of traditional and novel physical mutagenesis techniques are discussed, the differences between the two kinds of mutagenesis techniques are compared and their applications in the improvement of probiotics are described. At the same time, the characteristics and relevant applications of various high-throughput screening technologies (microtitration plate screening, fluorescence activated cell sorting, biosensors screening, droplet microfluidic platform screening and model animal platform screening) are summarized. This review provides important reference for reducing screening cost, improving screening efficiency and obtaining high yield ideal target strains.
-
Key words:
- physical mutagenesis /
- high-throughput screening /
- probiotics /
- application
-
表 1 物理诱变技术对比
Table 1. Comparison of physics mutagenesis technology
表 2 物理诱变在益生菌育种中的应用
Table 2. Application of physics mutagenesis in probiotics breeding
诱变菌株 诱变方法 改善性状 参考文献 提高产物产率/产量 乳酸片球L15 紫外诱变 改良菌株胞外多糖产量可达232.34 mg/L,比出发菌株提高56.46 mg/L [10] 乳酸菌 L--SZ303 紫外诱变 目标菌株发酵液中 γ-氨基丁酸产量14.646 g/L,比出发菌株提高了1.271 g/L [37] 枯草芽孢杆菌HDBF-DJ3N7 激光诱变 突变菌株纤溶酶活力提升18.40%,其酶活力值达到了429.89±5.74 IU/mL [38] 乳酸杆菌 微波诱变 目标菌株产共轭亚油酸多达48.85 μg/mL,与诱变前相比提高了41.4% [17] 植物乳杆菌 ARTP 与初始菌株相比,目标菌株产酸能力提高了50%,产酸量为0.015 mol/L [22] 干酪乳杆菌 HIB 目标菌株乳酸产量较原始菌株提高41.6%~83.3% [39] 嗜热乳酸菌 HIB 突变体高产L(+)-乳酸,产量为23.24±0.66 g/L,与野生型相比有显著增加 [27] 干酪乳杆菌CICC6028 LEIP 突变株高产L-(+)-乳酸,产量为136 g/L,比原菌株提高了38.8% [36] 提高菌株环境耐受力 嗜酸乳杆菌FZU-LA1301 UV 目标菌株能耐受45 ℃,比出发菌株(37 ℃)提高8 ℃ [11] 嗜酸乳杆菌 ARTP 突变体在pH为2、3的条件下培养3 h,其乳酸胁迫耐受性分别提高了75.67%和25.78%,
且与亲本菌株(76.2%)相比,具有更高的疏水性(87.2%)[24] 鼠李糖乳杆菌JF12-1 HIB 8株改良菌株的体外抑菌性比野生菌株提高15%以上 [31] 提高底物利用率 干酪乳杆菌NRRL-B-1922 激光诱变 突变菌株发酵乳制品后抗氧化及蛋白水解能力分别显著提高41%和14% [40] 表 3 高通量筛选技术对比
Table 3. Comparison of high-throughput screening techniques
类型 测定指标 筛选设备 筛选方法 检测指标 微量滴定板的筛选 吸光度值 紫外/可见光谱 直接筛选 番茄红素[41]、β-胡萝卜素[42]、对香豆酸[43] 间接筛选 L-乳酸[44] 荧光激活细胞分选 荧光强度 流式细胞仪 直接筛选 核黄素[46] 间接筛选 L-多巴[48] 生物传感器的筛选 电信号强度 生物传感器 蛋白质生物传感器 黄酮类化合物[51](转录因子) 核酸生物传感器 维生素B2[54](RNA核糖体开关) 液滴微流控平台筛选 荧光信号 液滴微流控筛选系统 表型筛选 α-淀粉酶[55] 组学筛选 多种代谢物 模式动物平台筛选 荧光强度 高内涵细胞成像系统、荧光倒置显微镜 表型筛选 生存、行为能力;果蝇眼睛发育、
斑马鱼胚胎发育[59]等表型益生菌体内筛选 益生菌定植 -
[1] MARCO M L, SANDERS M E, GANZLE M, et al. The international scientific association for probiotics and prebiotics (ISAPP) consensus statement on fermented foods[J]. Nature Reviews Gastroenterology & Hepatology,2021,18(3):196−208. [2] BINDA S, HILL C, JOHANSEN E, et al. Criteria to qualify microorganisms as “probiotic” in foods and dietary supplements[J]. Frontiers in Microbiology, 2020: 1662. [3] SANDERS M E, MERENSTEIN D J, REID G, et al. Probiotics and prebiotics in intestinal health and disease: From biology to the clinic[J]. Nature Reviews Gastroenterology & Hepatology,2019,16(10):605−616. [4] 王雅君, 陈力力, 廖杰琼, 等. 微生物物理诱变育种方法的研究进展[J]. 农产品加工(学刊),2013(3):25−31. [WANG Y J, CHEN L L, LIAO J Q, et al. Research progress on microbiological physical mutagenesis breeding methods[J]. Agricultural Processing,2013(3):25−31.WANG Y J, CHEN L L, LIAO J Q, et al. Research progress on microbiological physical mutagenesis breeding methods[J]. Agricultural Processing, 2013(3): 25-31. [5] 杨小冲, 陈忠军. 新型物理诱变技术在微生物育种中的应用进展[J]. 食品工业,2017,38(3):242−245. [YANG X C, CHEN Z J. Application progress of new microorganism physical mutation breeding technology[J]. Food Industry,2017,38(3):242−245.YANG X C, CHEN Z J. Application progress of new microorganism physical mutation breeding technology[J]. Food Industry, 2017, 38(3): 242-245. [6] ALEEM B, RASHID M H, ZEB N, et al. Random mutagenesis of super Koji (Aspergillus oryzae): Improvement in production and thermal stability of α-amylases for maltose syrup production[J]. BMC Microbiology,2018,18(1):1−13. doi: 10.1186/s12866-017-1144-x [7] ZENG W, GUO L, XU S, et al. High-throughput screening technology in industrial biotechnology[J]. Trends in Biotechnology,2020,38(8):888−906. doi: 10.1016/j.tibtech.2020.01.001 [8] IKEHATA H, ONO T. The mechanisms of UV mutagenesis[J]. Journal of Radiation Research,2011,52(2):115−125. doi: 10.1269/jrr.10175 [9] ZHOU S, ALPER H S. Strategies for directed and adapted evolution as part of microbial strain engineering[J]. Journal of Chemical Technology & Biotechnology,2019,94(2):366−376. [10] 卢承蓉, 叶美芝, 上官文丹, 等. 高产胞外多糖乳酸菌的诱变育种及其益生特性[J]. 食品与发酵工业,2020,46(12):14−20. [LU C R, YE M Z, SHANGGUAN W D, et al. Mutagenesis breeding of high-yield exopolysaccharides lactic acid bacteria and evaluation its probiotic properties[J]. Food and Fermentation Industries,2020,46(12):14−20. doi: 10.13995/j.cnki.11-1802/ts.023807LU C R, YE M Z, SHANGGUANG W D, et al. Mutagenesis breeding of high-yield exopolysaccharides lactic acid bacteria and evaluation its probiotic properties[J]. Food and Fermentation Industries, 2020, 46(12): 14-20. doi: 10.13995/j.cnki.11-1802/ts.023807 [11] 饶甜甜, 郭虹雯, 赵惠茹, 等. 紫外诱变及高温驯化联用筛选耐高温嗜酸乳杆菌[J]. 中国食品学报,2018,18(9):129−135. [RAO T T, GUO H W, ZHAO H R, et al. Screening of thermotolerant Lactobacillus acidophilus strain by UV mutation and high temperature acclimation[J]. Journal of Chinese Institute of Food Science and Technology,2018,18(9):129−135. doi: 10.16429/j.1009-7848.2018.09.016RAO T T, GUO H W, ZHAO H R, et al. Screening of thermotolerant Lactobacillus acidophilus strain by UV mutation and high temperature acclimation[J]. Journal of Chinese Institute of Food Science and Technology, 2018, 18(9): 129-135. doi: 10.16429/j.1009-7848.2018.09.016 [12] BANIK S, BANDYOPADHYAY S, GANGULY S. Bioeffects of microwave: A brief review[J]. Bioresource Technology,2003,87(2):155−159. doi: 10.1016/S0960-8524(02)00169-4 [13] 高宏正, 李国强, 邓素贞, 等. 微生物诱变育种概况及激光在微生物诱变中的应用[J]. 黑龙江畜牧兽医,2015(9):53−56. [GAO H Z, LI G Q, DENG S Z, et al. Overview of microbial mutation breeding and the application of laser in microbial mutation[J]. Heilongjiang Animal Science and Veterinary Medicine,2015(9):53−56. doi: 10.13881/j.cnki.hljxmsy.2015.0661GAO H Z, LI G Q, DENG S Z, et al. Overview of microbial mutation breeding and the application of laser in microbial mutation[J]. Heilongjiang Animal Science and Veterinary Medicine, 2015(9): 53-56. doi: 10.13881/j.cnki.hljxmsy.2015.0661 [14] ELSHAGHABEE F M F, EL-HUSSEIN A, MOHAMED M S M. Enhancement of labneh quality by laser-induced modulation of Lactocaseibacillus casei NRRL B-1922[J]. Fermentation,2022,8(3):132. doi: 10.3390/fermentation8030132 [15] KUBO M T K, SIGUEMOTO E S, FUNCIA E S, et al. Non-thermal effects of microwave and ohmic processing on microbial and enzyme inactivation: A critical review[J]. Current Opinion in Food Science,2020,35:36−48. doi: 10.1016/j.cofs.2020.01.004 [16] 张志军, 崔承彬, 李长伟. 微波诱变在药源微生物菌株选育中的应用[J]. 国际药学研究杂志,2010,37(6):426−434. [ZHANG Z J, CUI C B, LI C W. Application of microwave mutagenesis in microorganism breeding for medicinal source strain improvement[J]. International Journal of Pharmaceutical Research,2010,37(6):426−434. doi: 10.13220/j.cnki.jipr.2010.06.001ZHANG Z J, CUI C B, LI C W. Application of microwave mutagenesis in microorganism breeding for medicinal source strain improvement[J]. International Journal of Pharmaceutical Research, 2010, 37(6): 426-434. doi: 10.13220/j.cnki.jipr.2010.06.001 [17] 柯薇, 张楚. 产共轭亚油酸菌株的微波诱变[J]. 现代食品,2020(10):87−89, 93. [KE W, ZHANG C. Microwave mutagenesis of CLA producing strain[J]. Modern Food,2020(10):87−89, 93. doi: 10.16736/j.cnki.cn41-1434/ts.2020.10.030KE W, ZHANG C. Microwave mutagenesis of CLA producing strain[J]. Modern Food, 2020(10): 87-89, 93. doi: 10.16736/j.cnki.cn41-1434/ts.2020.10.030 [18] 曲德辉. 桑黄菌种的诱变对其菌丝活力和代谢产物影响的研究[D]. 上海: 上海海洋大学, 2016QU D H. Study on mutation breeding of Sanghuang porus Sanghuang and analysis with strain activities and metabolite production[D]. Shanghai: Shanghai Ocean University, 2016. [19] YU Q, LI Y, WU B, et al. Novel mutagenesis and screening technologies for food microorganisms: Advances and prospects[J]. Applied Microbiology and Biotechnology,2020,104(4):1517−1531. doi: 10.1007/s00253-019-10341-z [20] LEE Y, OKAYASU R. Strategies to enhance radio sensitivity to heavy ion radiation therapy[J]. International Journal of Particle Therapy,2018,5(1):114−121. doi: 10.14338/IJPT-18-00014.1 [21] ZHANG X, ZHANG X F, LI H P, et al. Atmospheric and room temperature plasma (ARTP) as a new powerful mutagenesis tool[J]. Applied Microbiology and Biotechnology,2014,98(12):5387−5396. doi: 10.1007/s00253-014-5755-y [22] 殷娜, 严小玉, 马珊, 等. 常压室温等离子体诱变选育高产酸植物乳杆菌[J]. 中国酿造,2020,39(1):77−81. [YIN N, YAN X Y, MA S, et al. Breeding of high-yield acid Lactobacillus plantarum by atmospheric plasma at room temperature[J]. China Brewing,2020,39(1):77−81. doi: 10.11882/j.issn.0254-5071.2020.01.015YIN N, YAN X Y, MA S, et al. Breeding of high-yield acid Lactobacillus plantarum by atmospheric plasma at room temperature[J]. China Brewing, 2020, 39(1): 77-81. doi: 10.11882/j.issn.0254-5071.2020.01.015 [23] 张敏. γ-氨基丁酸乳酸菌诱变选育及其发酵条件优化[D]. 芜湖: 安徽工程大学, 2020ZHANG M. Mutagenesis and breeding of γ-aminobutyric acid lactobacillus and optimization of fermentation conditions[D]. Wuhu: Anhui Polytechnic University, 2020. [24] LIU K, FANG H, CUI F, et al. ARTP mutation and adaptive laboratory evolution improve probiotic performance of Bacillus coagulans[J]. Applied Microbiology and Biotechnology,2020,104:6363−6373. doi: 10.1007/s00253-020-10703-y [25] WU B, QIN H, YANG Y, et al. Engineered Zymomonas mobilis tolerant to acetic acid and low pH via multiplex atmospheric and room temperature plasma mutagenesis[J]. Biotechnology for Biofuels,2019,12(1):1−13. doi: 10.1186/s13068-018-1346-y [26] OTTENHEIM C, NAWRATH M, WU J C. Microbial mutagenesis by atmospheric and room-temperature plasma (ARTP): The latest development[J]. Bioresour and Bioprocess, 2018, 12(5). [27] HU W, LI W, CHEN J. Recent advances of microbial breeding via heavy-ion mutagenesis at IMP[J]. Letters in Applied Microbiology,2017,65(4):274−280. doi: 10.1111/lam.12780 [28] 江爱莲. 基于高效的重离子束诱变技术选育高产L-乳酸菌株的研究[D]. 北京:中国科学院大学, 2019JIANG A L. Breeding of high-yield L-lactic acid strains based on high-efficiency heavy ion beam mutagenesis[D]. Beijing: University of Chinese Academy of Sciences, 2019. [29] 麻和平, 彭章普, 张文齐, 等. 重离子束辐照选育高产细菌素植物乳杆菌[J]. 新宝登录入口(中国)有限公司,2021,42(15):139−143. [MA H P, PENG Z P, ZHANG W Q, et al. Study on mutation breeding of high-yield bacteriocin Lactobacillus plantarum by heavy ion beam irradiation[J]. Science and Technology of Food Industry,2021,42(15):139−143. doi: 10.13386/j.issn1002-0306.2021030234MA H P, PENG Z P, ZHANG W Q, et al. Study on mutation breeding of high-yield bacteriocin Lactobacillus plantarum by heavy ion beam irradiation[J]. Science and Technology of Food Industry, 2021, 42(15): 139-143. doi: 10.13386/j.issn1002-0306.2021030234 [30] 田雪娇. 重离子束辐照选育高产乳酸菌株及其发酵工艺技术研究[D]. 北京: 中国科学院大学, 2022TIAN X J. Breeding of high-yield lactic acid strains by heavy ion beam irradiation and its fermentation technology[D]. Beijing: University of Chinese Academy of Sciences, 2022. [31] 蒋威, 沈文祥, 郑娟善, 等. 奶牛源鼠李糖乳杆菌的12C 6+ 重离子束诱变选育[J]. 新宝登录入口(中国)有限公司,2022,43(17):140−148. [JIANG W, SHEN W X, ZHENG J S, et al. Mutation breeding of Lactobacillus rhamnosus from dairy cow by 12C6+ heavy ion beam[J]. Science and Technology of Food Industry,2022,43(17):140−148.JIANG W, SHEN W X, ZHEN J S, et al. Mutation breeding of Lactobacillus rhamnosus from dairy cow by 12C 6+ heavy ion beam[J]. Science and Technology of Food Industry, 2022, 43(17): 140-148. [32] GU S B, LI S C, FENG H Y, et al. A novel approach to microbial breeding-low-energy ion implantation[J]. Applied Microbiology and Biotechnology,2008,78(2):201−209. doi: 10.1007/s00253-007-1312-2 [33] 王岁楼, 吴晓宗, 陈德经, 等. 低能离子注入对产胡萝卜素红酵母NR06的诱变效应研究[J]. 新宝登录入口(中国)有限公司,2008(2):107−110. [WANG S L, WU X Z, CHEN D J, et al. Mutagenic effect of ions implantation on the carotene-producing Rhodotorula NR06[J]. Journal of Food Research,2008(2):107−110. doi: 10.13386/j.issn1002-0306.2008.02.026WANG S L, WU X Z, CHEN D J, et al. Mutagenic effect of ions implantation on the carotene-producing Rhodotorula NR06[J]. Journal of Food Research, 2008(2): 107-110. doi: 10.13386/j.issn1002-0306.2008.02.026 [34] 周颖欣. 利用低能离子注入转化酵母技术全合成银杏内酯B的研究[D]. 西安: 陕西科技大学, 2016ZHOU Y X. Engineering of ginkgolide B-producing yeast strain using low-energy ion implantation[D]. Xi’an: Shaanxi University of Science & Technology, 2016. [35] 白巧秀, 欧科, 王婷, 等. 低能离子注入诱变酿酒酵母菌胞外代谢产物的差异性分析[J]. 现代食品科技,2021,37(9):43−49. [BAI Q X, OU K, WANG T, et al. Difference analysis of the extracellular metabolites of Saccharomyces cerevisiae mutagenized by low-energy ion implantation[J]. Modern Food Science & Technology,2021,37(9):43−49. doi: 10.13982/j.mfst.1673-9078.2021.9.1102BAI Q X, OU K, WANG T, et al. Difference analysis of the extracellular metabolites of Saccharomyces cerevisiae mutagenized by low-energy ion implantation[J]. Modern Food Science & Technology, 2021, 37(9): 43-49. doi: 10.13982/j.mfst.1673-9078.2021.9.1102 [36] LI S C, ZHU Z Y, GU S B, et al. Screening of a L-lactic acid producing strain of Lactobacillus casei by low-energy ion implantation[C]. Advanced Materials Research, 2012: 471-476. [37] 王冰聪. 产γ-氨基丁酸乳酸菌的筛选及发酵条件的优化[D]. 长春: 长春大学, 2019WANG B C. Screening of γ-aminobutyric acid-producing lactic acid bacteria and optimization of the fermentation conditions[D]. Changchun: Changchun University, 2019. [38] 孙莹, 王海曼, 宋刚, 等. 利用氦氖激光诱变提高枯草芽孢杆菌纤溶酶活力的研究[J]. 中国农学通报,2020,36(35):28−36. [SUN Y, WANG H M, SONG G, et al. He-Ne laser mutagenesis increasing the fibrinolytic enzyme activity of Bacillus subtilis[J]. Chinese Agricultural Science Bulletin,2020,36(35):28−36. doi: 10.11924/j.issn.1000-6850.casb20191201001SUN Y, WANG H M, SONG G, et al. He-Ne Laser mutagenesis increasing the fibrinolytic enzyme activity of Bacillus subtilis[J]. Chinese Agricultural Science Bulletin, 2020, 36(35): 28-36. doi: 10.11924/j.issn.1000-6850.casb20191201001 [39] 李荞荞. 重离子辐照诱变干酪乳杆菌优良菌株选育及在抗结肠癌中的应用[D]. 北京: 中国科学院大学, 2020LI Q Q. Screening of excellent Lactobacillus casei strains by heavy ion mutagenesis and its application in anti-colon cancer[D]. Beijing: University of Chinese Academy of Sciences, 2020. [40] 崔国艳, 陈五岭, 周美红. 激光诱变选育耐高温耐酸乳酸菌[J]. 中国酿造,2012,31(10):153−156. [CUI G Y, CHEN W L, ZHOU M H. Screening of the thermotolerant aciduric lactic acid bacteria by He-Ne laser[J]. China Brewing,2012,31(10):153−156. doi: 10.3969/j.issn.0254-5071.2012.10.041CUI G Y, CHEN W L, ZHOU M H. Screening of the thermotolerant aciduric lactic acid bacteria by He-Ne laser[J]. China Brewing, 2012, 31(10): 153-156. doi: 10.3969/j.issn.0254-5071.2012.10.041 [41] QIANG W, LING R F, LUO W, et al. Mutation breeding of lycopene-producing strain Blakeslea trispora by a novel atmospheric and room temperature plasma (ARTP)[J]. Applied Biochemistry and Biotechnology,2014,174(1):452−460. doi: 10.1007/s12010-014-0998-8 [42] LI J, SHEN J, SUN Z, et al. Discovery of several novel targets that enhance β-carotene production in Saccharomyces cerevisiae[J]. Frontiers in Microbiology,2017,8:1116. doi: 10.3389/fmicb.2017.01116 [43] ZHOU S, LIU P, CHEN J, et al. Characterization of mutants of a tyrosine ammonia-lyase from Rhodotorula glutinis[J]. Applied Microbiology and Biotechnology,2016,100(24):10443−10452. doi: 10.1007/s00253-016-7672-8 [44] LÜ X, SONG J, YU B, et al. High-throughput system for screening of high L-lactic acid-productivity strains in deep-well microtiter plates[J]. Bioprocess and Biosystems Engineering,2016,39(11):1737−1747. doi: 10.1007/s00449-016-1649-y [45] JIANG A L, HU W, LI W J, et al. Enhanced production of L-lactic acid by Lactobacillus thermophilus SRZ50 mutant generated by high-linear energy transfer heavy ion mutagenesis[J]. Engineering in Life Sciences,2018,18(9):626−634. doi: 10.1002/elsc.201800052 [46] CHEN J, VESTERGAARD M, JENSEN T G, et al. Finding the needle in the haystack-the use of microfluidic droplet technology to identify vitamin-secreting lactic acid bacteria[J]. MBio,2017,8(3):e00526−17. [47] BONOMO M G, MILELLA L, MARTELLI G, et al. Stress response assessment of Lactobacillus sakei strains selected as potential autochthonous starter cultures by flow cytometry and nucleic acid double-staining analyses[J]. Journal of Applied Microbiology,2013,115(3):786−795. doi: 10.1111/jam.12271 [48] DELOACHE W C, RUSS Z N, NARCROSS L, et al. An enzyme-coupled biosensor enables (S)-reticuline production in yeast from glucose[J]. Nature Chemical Biology,2015,11(7):465−471. doi: 10.1038/nchembio.1816 [49] BELLALI S, LAGIER J C, MILLION M, et al. Running after ghosts: Are dead bacteria the dark matter of the human gut microbiota[J]. Gut Microbes,2021,13(1):1897208. doi: 10.1080/19490976.2021.1897208 [50] MICHENER J K, THODEY K, LIANG J C, et al. Applications of genetically-encoded biosensors for the construction and control of biosynthetic pathways[J]. Metabolic Engineering,2012,14(3):212−222. doi: 10.1016/j.ymben.2011.09.004 [51] RAMAN S, ROGERS J K, TAYLOR N D, et al. Evolution-guided optimization of biosynthetic pathways[J]. Proceedings of the National Academy of Sciences,2014,111(50):17803−17808. doi: 10.1073/pnas.1409523111 [52] LIM H G, JANG S, JANG S, et al. Design and optimization of genetically encoded biosensors for high-throughput screening of chemicals[J]. Current Opinion in Biotechnology,2018,54:18−25. doi: 10.1016/j.copbio.2018.01.011 [53] CHEN X, ZHANG D, SU N, et al. Visualizing RNA dynamics in live cells with bright and stable fluorescent RNAs[J]. Nature Biotechnology,2019,37(11):1287−1293. doi: 10.1038/s41587-019-0249-1 [54] MEYER A, PELLAUX R, POTOT S, et al. Optimization of a whole-cell biocatalyst by employing genetically encoded product sensors inside nanolitre reactors[J]. Nature Chemistry,2015,7(8):673−678. doi: 10.1038/nchem.2301 [55] SJOSTROM S L, BAI Y, HUANG M, et al. High-throughput screening for industrial enzyme production hosts by droplet microfluidics[J]. Lab on A Chip,2014,14(4):806−813. doi: 10.1039/C3LC51202A [56] ABATE A R, HUNG T, SPERLING R A, et al. DNA sequence analysis with droplet-based microfluidics[J]. Lab on A Chip,2013,13(24):4864−4869. doi: 10.1039/c3lc50905b [57] VALIHRACH L, ANDROVIC P, KUBISTA M. Platforms for single-cell collection and analysis[J]. International Journal of Molecular Sciences,2018,19(3):807. doi: 10.3390/ijms19030807 [58] GARALDE D R, SNELL E A, JACHIMOWICZ D, et al. Highly parallel direct RNA sequencing on an array of nanopores[J]. Nature Methods,2018,15(3):201−206. doi: 10.1038/nmeth.4577 [59] MALICKI J, JO H, WEI X, et al. Analysis of gene function in the zebrafish retina[J]. Methods,2002,28(4):427−438. doi: 10.1016/S1046-2023(02)00262-1 [60] GALLEGO I I. Use of zebrafish to evaluate the probiotic efficacy of lactic acid bacteria[D]. Universidad Del País Vasco-Euskal Herriko Unibertsitatea, 2017. [61] LOVE D R, PICHLER F B, DODD A, et al. Technology for high-throughput screens: the present and future using zebrafish[J]. Current Opinion in Biotechnology,2004,15(6):564−571. doi: 10.1016/j.copbio.2004.09.004 [62] GILL M S, OLSEN A, SAMPAYO J N, et al. An automated high-throughput assay for survival of the nematode Caenorhabditis elegans[J]. Free Radical Biology and Medicine,2003,35(6):558−565. doi: 10.1016/S0891-5849(03)00328-9 [63] HUNT P R, OLEJNIK N, SPRANDO R L. Toxicity ranking of heavy metals with screening method using adult Caenorhabditis elegans and propidium iodide replicates toxicity ranking in rat[J]. Food and Chemical Toxicology,2012,50(9):3280−3290. doi: 10.1016/j.fct.2012.06.051 [64] WÄHLBY C, CONERY A L, BRAY M A, et al. High-and low-throughput scoring of fat mass and body fat distribution in C. elegans[J]. Methods,2014,68(3):492−499. doi: 10.1016/j.ymeth.2014.04.017 [65] PINO E C, WEBSTER C M, CARR C E, et al. Biochemical and high throughput microscopic assessment of fat mass in Caenorhabditis elegans[J]. Journal of Visualized Experiments,2013(73):e50180. [66] RODA A. Discovery and development of the green fluorescent protein, GFP: The 2008 Nobel Prize[J]. Analytical and Bioanalytical Chemistry,2010,396(5):1619−1622. doi: 10.1007/s00216-010-3452-y [67] SANDERS J K, JACKSON S E. The discovery and development of the green fluorescent protein, GFP[J]. Chemical Society Reviews,2009,38(10):2821−2822. doi: 10.1039/b917331p [68] 倪彩新, 金星, 周炜, 等. 利用线虫模型评价乳酸菌体内抗氧化能力及其与体外抗氧化参数的对比[J]. 食品与发酵工业,2019,45(3):21−27. [NI C X, JIN X, ZHOU W, et al. Evaluation of antioxidant capacity of lactic acid bacteria in vivo using Caenorhabditis elegants and comparison with its antioxidant parameters[J]. Food and Fermentation Industries,2019,45(3):21−27. doi: 10.13995/j.cnki.11-1802/ts.018228NI C X, JIN X, ZHOU W, et al. Evaluation of antioxidant capacity of lactic acid bacteria in vivo using Caenorhabditis elegants and comparison with its antioxidant parameters[J]. Food and fermentation industries, 2019, 45(3): 21-27. doi: 10.13995/j.cnki.11-1802/ts.018228 [69] CHASTON J M, NEWELL P D, DOUGLAS A E. Metagenome-wide association of microbial determinants of host phenotype in Drosophila melanogaster[J]. MBio,2014,5(5):e01631−14. [70] PANDEY U B, NICHOLS C D. Human disease models in Drosophila melanogaster and the role of the fly in therapeutic drug discovery[J]. Pharmacological Reviews,2011,63(2):411−436. doi: 10.1124/pr.110.003293 [71] GÓMEZ E, MARTÍN F, NOGACKA A, et al. Impact of probiotics on development and behaviour in Drosophila melanogaster: A potential in vivo model to assess probiotics[J]. Beneficial Microbes,2019,10(2):179−188. doi: 10.3920/BM2018.0012 -