• 食品科学与工程领域高质量科技期刊分级目录第一方阵T1
  • Scopus
  • FSTA
  • 北大核心期刊
  • 中国核心学术期刊RCCSE
  • DOAJ
  • JST China
  • 中国精品科技期刊
  • 中国农业核心期刊
  • CA
  • WJCI
  • 中国科技核心期刊CSTPCD
  • 中国生物医学SinoMed
中国精品科技期刊2020 食品青年科学家峰会

物理诱变和高通量筛选在益生菌选育中的应用

潘丽娜 唐溶雪 康文丽 李意思 胡鹏钰 汪家琦 周洪波

潘丽娜,唐溶雪,康文丽,等. 物理诱变和高通量筛选在益生菌选育中的应用[J]. 新宝登录入口(中国)有限公司,2023,44(13):458−465. doi:  10.13386/j.issn1002-0306.2022090175
引用本文: 潘丽娜,唐溶雪,康文丽,等. 物理诱变和高通量筛选在益生菌选育中的应用[J]. 新宝登录入口(中国)有限公司,2023,44(13):458−465. doi:  10.13386/j.issn1002-0306.2022090175
PAN Lina, TANG Rongxue, KANG Wenli, et al. Application of Physical Mutagenesis and High Throughput Screening Technology in the Selection of Probiotics[J]. Science and Technology of Food Industry, 2023, 44(13): 458−465. (in Chinese with English abstract). doi:  10.13386/j.issn1002-0306.2022090175
Citation: PAN Lina, TANG Rongxue, KANG Wenli, et al. Application of Physical Mutagenesis and High Throughput Screening Technology in the Selection of Probiotics[J]. Science and Technology of Food Industry, 2023, 44(13): 458−465. (in Chinese with English abstract). doi:  10.13386/j.issn1002-0306.2022090175

物理诱变和高通量筛选在益生菌选育中的应用

doi: 10.13386/j.issn1002-0306.2022090175
基金项目: 湖南省创新平台与人才计划“湖南省营养健康品工程技术研究中心”项目(2019TP2066)。
详细信息
    作者简介:

    潘丽娜(1982−),女,博士研究生,研究方向:资源与环境,E-mail:lina.pan@ausnutria.com

    通讯作者:

    周洪波(1969−),男,博士,教授,研究方向:生物工程,E-mail:zhouhb@csu.edu.cn

  • 中图分类号: TS201.3

Application of Physical Mutagenesis and High Throughput Screening Technology in the Selection of Probiotics

  • 摘要: 野生型菌株活性较低,难以满足工业化需求,通过使用物理诱变方法可改善菌种性能,进而获得高产、优质菌株。同时需寻找快速、合适的筛选方法从突变文库中获得理想目标菌株。传统人工筛选及摇瓶培养成本高、耗时耗力,高通量筛选技术解决了这一难题。本文探讨了传统及新型物理诱变技术原理,对比了两类诱变技术的区别及阐述了其在益生菌选育中的应用。同时总结了各高通量筛选技术(微量滴定板筛选、荧光激活细胞分选、生物传感器的筛选、液滴微流控平台筛选及模式动物平台的筛选)的特点及其在益生菌筛选的相关应用。本文为后续降低筛选成本、提高筛选效率、获得高产理想目标菌株提供重要参考。
  • 表  1  物理诱变技术对比

    Table  1.   Comparison of physics mutagenesis technology

    传统物理诱变技术

    操作便捷性突变率突变谱对液体培养物的穿透能力设备/系统尺寸成本商业可用性参考文献
    紫外诱变简单中等限制可用[7]
    激光诱变未知复杂未知未知中等不可用[13]
    微波诱变简单未知中等中等可用[16]
    ARTP简单中等可用[7]
    HIB未知复杂不可用[19-20]
    LEIP未知复杂不可用[19]
    下载: 导出CSV

    表  2  物理诱变在益生菌育种中的应用

    Table  2.   Application of physics mutagenesis in probiotics breeding

    诱变菌株诱变方法改善性状参考文献
    提高产物产率/产量
    乳酸片球L15紫外诱变改良菌株胞外多糖产量可达232.34 mg/L,比出发菌株提高56.46 mg/L[10]
    乳酸菌 L--SZ303紫外诱变目标菌株发酵液中 γ-氨基丁酸产量14.646 g/L,比出发菌株提高了1.271 g/L[37]
    枯草芽孢杆菌HDBF-DJ3N7激光诱变突变菌株纤溶酶活力提升18.40%,其酶活力值达到了429.89±5.74 IU/mL[38]
    乳酸杆菌微波诱变目标菌株产共轭亚油酸多达48.85 μg/mL,与诱变前相比提高了41.4%[17]
    植物乳杆菌ARTP与初始菌株相比,目标菌株产酸能力提高了50%,产酸量为0.015 mol/L[22]
    干酪乳杆菌HIB目标菌株乳酸产量较原始菌株提高41.6%~83.3%[39]
    嗜热乳酸菌
    HIB突变体高产L(+)-乳酸,产量为23.24±0.66 g/L,与野生型相比有显著增加[27]
    干酪乳杆菌CICC6028LEIP突变株高产L-(+)-乳酸,产量为136 g/L,比原菌株提高了38.8%[36]
    提高菌株环境耐受力
    嗜酸乳杆菌FZU-LA1301UV目标菌株能耐受45 ℃,比出发菌株(37 ℃)提高8 ℃[11]
    嗜酸乳杆菌ARTP突变体在pH为2、3的条件下培养3 h,其乳酸胁迫耐受性分别提高了75.67%和25.78%,
    且与亲本菌株(76.2%)相比,具有更高的疏水性(87.2%)
    [24]
    鼠李糖乳杆菌JF12-1HIB8株改良菌株的体外抑菌性比野生菌株提高15%以上[31]
    提高底物利用率
    干酪乳杆菌NRRL-B-1922激光诱变突变菌株发酵乳制品后抗氧化及蛋白水解能力分别显著提高41%和14%[40]
    下载: 导出CSV

    表  3  高通量筛选技术对比

    Table  3.   Comparison of high-throughput screening techniques

    类型测定指标筛选设备筛选方法检测指标
    微量滴定板的筛选吸光度值紫外/可见光谱直接筛选番茄红素[41]β-胡萝卜素[42]、对香豆酸[43]
    间接筛选L-乳酸[44]
    荧光激活细胞分选荧光强度流式细胞仪直接筛选核黄素[46]
    间接筛选L-多巴[48]
    生物传感器的筛选电信号强度生物传感器蛋白质生物传感器黄酮类化合物[51](转录因子)
    核酸生物传感器维生素B2[54](RNA核糖体开关)
    液滴微流控平台筛选荧光信号
    液滴微流控筛选系统表型筛选α-淀粉酶[55]
    组学筛选多种代谢物
    模式动物平台筛选荧光强度高内涵细胞成像系统、荧光倒置显微镜表型筛选生存、行为能力;果蝇眼睛发育、
    斑马鱼胚胎发育[59]等表型
    益生菌体内筛选益生菌定植
    下载: 导出CSV
  • [1] MARCO M L, SANDERS M E, GANZLE M, et al. The international scientific association for probiotics and prebiotics (ISAPP) consensus statement on fermented foods[J]. Nature Reviews Gastroenterology & Hepatology,2021,18(3):196−208.
    [2] BINDA S, HILL C, JOHANSEN E, et al. Criteria to qualify microorganisms as “probiotic” in foods and dietary supplements[J]. Frontiers in Microbiology, 2020: 1662.
    [3] SANDERS M E, MERENSTEIN D J, REID G, et al. Probiotics and prebiotics in intestinal health and disease: From biology to the clinic[J]. Nature Reviews Gastroenterology & Hepatology,2019,16(10):605−616.
    [4] 王雅君, 陈力力, 廖杰琼, 等. 微生物物理诱变育种方法的研究进展[J]. 农产品加工(学刊),2013(3):25−31. [WANG Y J, CHEN L L, LIAO J Q, et al. Research progress on microbiological physical mutagenesis breeding methods[J]. Agricultural Processing,2013(3):25−31.

    WANG Y J, CHEN L L, LIAO J Q, et al. Research progress on microbiological physical mutagenesis breeding methods[J]. Agricultural Processing, 2013(3): 25-31.
    [5] 杨小冲, 陈忠军. 新型物理诱变技术在微生物育种中的应用进展[J]. 食品工业,2017,38(3):242−245. [YANG X C, CHEN Z J. Application progress of new microorganism physical mutation breeding technology[J]. Food Industry,2017,38(3):242−245.

    YANG X C, CHEN Z J. Application progress of new microorganism physical mutation breeding technology[J]. Food Industry, 2017, 38(3): 242-245.
    [6] ALEEM B, RASHID M H, ZEB N, et al. Random mutagenesis of super Koji (Aspergillus oryzae): Improvement in production and thermal stability of α-amylases for maltose syrup production[J]. BMC Microbiology,2018,18(1):1−13. doi:  10.1186/s12866-017-1144-x
    [7] ZENG W, GUO L, XU S, et al. High-throughput screening technology in industrial biotechnology[J]. Trends in Biotechnology,2020,38(8):888−906. doi:  10.1016/j.tibtech.2020.01.001
    [8] IKEHATA H, ONO T. The mechanisms of UV mutagenesis[J]. Journal of Radiation Research,2011,52(2):115−125. doi:  10.1269/jrr.10175
    [9] ZHOU S, ALPER H S. Strategies for directed and adapted evolution as part of microbial strain engineering[J]. Journal of Chemical Technology & Biotechnology,2019,94(2):366−376.
    [10] 卢承蓉, 叶美芝, 上官文丹, 等. 高产胞外多糖乳酸菌的诱变育种及其益生特性[J]. 食品与发酵工业,2020,46(12):14−20. [LU C R, YE M Z, SHANGGUAN W D, et al. Mutagenesis breeding of high-yield exopolysaccharides lactic acid bacteria and evaluation its probiotic properties[J]. Food and Fermentation Industries,2020,46(12):14−20. doi:  10.13995/j.cnki.11-1802/ts.023807

    LU C R, YE M Z, SHANGGUANG W D, et al. Mutagenesis breeding of high-yield exopolysaccharides lactic acid bacteria and evaluation its probiotic properties[J]. Food and Fermentation Industries, 2020, 46(12): 14-20. doi:  10.13995/j.cnki.11-1802/ts.023807
    [11] 饶甜甜, 郭虹雯, 赵惠茹, 等. 紫外诱变及高温驯化联用筛选耐高温嗜酸乳杆菌[J]. 中国食品学报,2018,18(9):129−135. [RAO T T, GUO H W, ZHAO H R, et al. Screening of thermotolerant Lactobacillus acidophilus strain by UV mutation and high temperature acclimation[J]. Journal of Chinese Institute of Food Science and Technology,2018,18(9):129−135. doi:  10.16429/j.1009-7848.2018.09.016

    RAO T T, GUO H W, ZHAO H R, et al. Screening of thermotolerant Lactobacillus acidophilus strain by UV mutation and high temperature acclimation[J]. Journal of Chinese Institute of Food Science and Technology, 2018, 18(9): 129-135. doi:  10.16429/j.1009-7848.2018.09.016
    [12] BANIK S, BANDYOPADHYAY S, GANGULY S. Bioeffects of microwave: A brief review[J]. Bioresource Technology,2003,87(2):155−159. doi:  10.1016/S0960-8524(02)00169-4
    [13] 高宏正, 李国强, 邓素贞, 等. 微生物诱变育种概况及激光在微生物诱变中的应用[J]. 黑龙江畜牧兽医,2015(9):53−56. [GAO H Z, LI G Q, DENG S Z, et al. Overview of microbial mutation breeding and the application of laser in microbial mutation[J]. Heilongjiang Animal Science and Veterinary Medicine,2015(9):53−56. doi:  10.13881/j.cnki.hljxmsy.2015.0661

    GAO H Z, LI G Q, DENG S Z, et al. Overview of microbial mutation breeding and the application of laser in microbial mutation[J]. Heilongjiang Animal Science and Veterinary Medicine, 2015(9): 53-56. doi:  10.13881/j.cnki.hljxmsy.2015.0661
    [14] ELSHAGHABEE F M F, EL-HUSSEIN A, MOHAMED M S M. Enhancement of labneh quality by laser-induced modulation of Lactocaseibacillus casei NRRL B-1922[J]. Fermentation,2022,8(3):132. doi:  10.3390/fermentation8030132
    [15] KUBO M T K, SIGUEMOTO E S, FUNCIA E S, et al. Non-thermal effects of microwave and ohmic processing on microbial and enzyme inactivation: A critical review[J]. Current Opinion in Food Science,2020,35:36−48. doi:  10.1016/j.cofs.2020.01.004
    [16] 张志军, 崔承彬, 李长伟. 微波诱变在药源微生物菌株选育中的应用[J]. 国际药学研究杂志,2010,37(6):426−434. [ZHANG Z J, CUI C B, LI C W. Application of microwave mutagenesis in microorganism breeding for medicinal source strain improvement[J]. International Journal of Pharmaceutical Research,2010,37(6):426−434. doi:  10.13220/j.cnki.jipr.2010.06.001

    ZHANG Z J, CUI C B, LI C W. Application of microwave mutagenesis in microorganism breeding for medicinal source strain improvement[J]. International Journal of Pharmaceutical Research, 2010, 37(6): 426-434. doi:  10.13220/j.cnki.jipr.2010.06.001
    [17] 柯薇, 张楚. 产共轭亚油酸菌株的微波诱变[J]. 现代食品,2020(10):87−89, 93. [KE W, ZHANG C. Microwave mutagenesis of CLA producing strain[J]. Modern Food,2020(10):87−89, 93. doi:  10.16736/j.cnki.cn41-1434/ts.2020.10.030

    KE W, ZHANG C. Microwave mutagenesis of CLA producing strain[J]. Modern Food, 2020(10): 87-89, 93. doi:  10.16736/j.cnki.cn41-1434/ts.2020.10.030
    [18] 曲德辉. 桑黄菌种的诱变对其菌丝活力和代谢产物影响的研究[D]. 上海: 上海海洋大学, 2016

    QU D H. Study on mutation breeding of Sanghuang porus Sanghuang and analysis with strain activities and metabolite production[D]. Shanghai: Shanghai Ocean University, 2016.
    [19] YU Q, LI Y, WU B, et al. Novel mutagenesis and screening technologies for food microorganisms: Advances and prospects[J]. Applied Microbiology and Biotechnology,2020,104(4):1517−1531. doi:  10.1007/s00253-019-10341-z
    [20] LEE Y, OKAYASU R. Strategies to enhance radio sensitivity to heavy ion radiation therapy[J]. International Journal of Particle Therapy,2018,5(1):114−121. doi:  10.14338/IJPT-18-00014.1
    [21] ZHANG X, ZHANG X F, LI H P, et al. Atmospheric and room temperature plasma (ARTP) as a new powerful mutagenesis tool[J]. Applied Microbiology and Biotechnology,2014,98(12):5387−5396. doi:  10.1007/s00253-014-5755-y
    [22] 殷娜, 严小玉, 马珊, 等. 常压室温等离子体诱变选育高产酸植物乳杆菌[J]. 中国酿造,2020,39(1):77−81. [YIN N, YAN X Y, MA S, et al. Breeding of high-yield acid Lactobacillus plantarum by atmospheric plasma at room temperature[J]. China Brewing,2020,39(1):77−81. doi:  10.11882/j.issn.0254-5071.2020.01.015

    YIN N, YAN X Y, MA S, et al. Breeding of high-yield acid Lactobacillus plantarum by atmospheric plasma at room temperature[J]. China Brewing, 2020, 39(1): 77-81. doi:  10.11882/j.issn.0254-5071.2020.01.015
    [23] 张敏. γ-氨基丁酸乳酸菌诱变选育及其发酵条件优化[D]. 芜湖: 安徽工程大学, 2020

    ZHANG M. Mutagenesis and breeding of γ-aminobutyric acid lactobacillus and optimization of fermentation conditions[D]. Wuhu: Anhui Polytechnic University, 2020.
    [24] LIU K, FANG H, CUI F, et al. ARTP mutation and adaptive laboratory evolution improve probiotic performance of Bacillus coagulans[J]. Applied Microbiology and Biotechnology,2020,104:6363−6373. doi:  10.1007/s00253-020-10703-y
    [25] WU B, QIN H, YANG Y, et al. Engineered Zymomonas mobilis tolerant to acetic acid and low pH via multiplex atmospheric and room temperature plasma mutagenesis[J]. Biotechnology for Biofuels,2019,12(1):1−13. doi:  10.1186/s13068-018-1346-y
    [26] OTTENHEIM C, NAWRATH M, WU J C. Microbial mutagenesis by atmospheric and room-temperature plasma (ARTP): The latest development[J]. Bioresour and Bioprocess, 2018, 12(5).
    [27] HU W, LI W, CHEN J. Recent advances of microbial breeding via heavy-ion mutagenesis at IMP[J]. Letters in Applied Microbiology,2017,65(4):274−280. doi:  10.1111/lam.12780
    [28] 江爱莲. 基于高效的重离子束诱变技术选育高产L-乳酸菌株的研究[D]. 北京:中国科学院大学, 2019

    JIANG A L. Breeding of high-yield L-lactic acid strains based on high-efficiency heavy ion beam mutagenesis[D]. Beijing: University of Chinese Academy of Sciences, 2019.
    [29] 麻和平, 彭章普, 张文齐, 等. 重离子束辐照选育高产细菌素植物乳杆菌[J]. 新宝登录入口(中国)有限公司,2021,42(15):139−143. [MA H P, PENG Z P, ZHANG W Q, et al. Study on mutation breeding of high-yield bacteriocin Lactobacillus plantarum by heavy ion beam irradiation[J]. Science and Technology of Food Industry,2021,42(15):139−143. doi:  10.13386/j.issn1002-0306.2021030234

    MA H P, PENG Z P, ZHANG W Q, et al. Study on mutation breeding of high-yield bacteriocin Lactobacillus plantarum by heavy ion beam irradiation[J]. Science and Technology of Food Industry, 2021, 42(15): 139-143. doi:  10.13386/j.issn1002-0306.2021030234
    [30] 田雪娇. 重离子束辐照选育高产乳酸菌株及其发酵工艺技术研究[D]. 北京: 中国科学院大学, 2022

    TIAN X J. Breeding of high-yield lactic acid strains by heavy ion beam irradiation and its fermentation technology[D]. Beijing: University of Chinese Academy of Sciences, 2022.
    [31] 蒋威, 沈文祥, 郑娟善, 等. 奶牛源鼠李糖乳杆菌的12C 6+ 重离子束诱变选育[J]. 新宝登录入口(中国)有限公司,2022,43(17):140−148. [JIANG W, SHEN W X, ZHENG J S, et al. Mutation breeding of Lactobacillus rhamnosus from dairy cow by 12C6+ heavy ion beam[J]. Science and Technology of Food Industry,2022,43(17):140−148.

    JIANG W, SHEN W X, ZHEN J S, et al. Mutation breeding of Lactobacillus rhamnosus from dairy cow by 12C 6+ heavy ion beam[J]. Science and Technology of Food Industry, 2022, 43(17): 140-148.
    [32] GU S B, LI S C, FENG H Y, et al. A novel approach to microbial breeding-low-energy ion implantation[J]. Applied Microbiology and Biotechnology,2008,78(2):201−209. doi:  10.1007/s00253-007-1312-2
    [33] 王岁楼, 吴晓宗, 陈德经, 等. 低能离子注入对产胡萝卜素红酵母NR06的诱变效应研究[J]. 新宝登录入口(中国)有限公司,2008(2):107−110. [WANG S L, WU X Z, CHEN D J, et al. Mutagenic effect of ions implantation on the carotene-producing Rhodotorula NR06[J]. Journal of Food Research,2008(2):107−110. doi:  10.13386/j.issn1002-0306.2008.02.026

    WANG S L, WU X Z, CHEN D J, et al. Mutagenic effect of ions implantation on the carotene-producing Rhodotorula NR06[J]. Journal of Food Research, 2008(2): 107-110. doi:  10.13386/j.issn1002-0306.2008.02.026
    [34] 周颖欣. 利用低能离子注入转化酵母技术全合成银杏内酯B的研究[D]. 西安: 陕西科技大学, 2016

    ZHOU Y X. Engineering of ginkgolide B-producing yeast strain using low-energy ion implantation[D]. Xi’an: Shaanxi University of Science & Technology, 2016.
    [35] 白巧秀, 欧科, 王婷, 等. 低能离子注入诱变酿酒酵母菌胞外代谢产物的差异性分析[J]. 现代食品科技,2021,37(9):43−49. [BAI Q X, OU K, WANG T, et al. Difference analysis of the extracellular metabolites of Saccharomyces cerevisiae mutagenized by low-energy ion implantation[J]. Modern Food Science & Technology,2021,37(9):43−49. doi:  10.13982/j.mfst.1673-9078.2021.9.1102

    BAI Q X, OU K, WANG T, et al. Difference analysis of the extracellular metabolites of Saccharomyces cerevisiae mutagenized by low-energy ion implantation[J]. Modern Food Science & Technology, 2021, 37(9): 43-49. doi:  10.13982/j.mfst.1673-9078.2021.9.1102
    [36] LI S C, ZHU Z Y, GU S B, et al. Screening of a L-lactic acid producing strain of Lactobacillus casei by low-energy ion implantation[C]. Advanced Materials Research, 2012: 471-476.
    [37] 王冰聪. 产γ-氨基丁酸乳酸菌的筛选及发酵条件的优化[D]. 长春: 长春大学, 2019

    WANG B C. Screening of γ-aminobutyric acid-producing lactic acid bacteria and optimization of the fermentation conditions[D]. Changchun: Changchun University, 2019.
    [38] 孙莹, 王海曼, 宋刚, 等. 利用氦氖激光诱变提高枯草芽孢杆菌纤溶酶活力的研究[J]. 中国农学通报,2020,36(35):28−36. [SUN Y, WANG H M, SONG G, et al. He-Ne laser mutagenesis increasing the fibrinolytic enzyme activity of Bacillus subtilis[J]. Chinese Agricultural Science Bulletin,2020,36(35):28−36. doi:  10.11924/j.issn.1000-6850.casb20191201001

    SUN Y, WANG H M, SONG G, et al. He-Ne Laser mutagenesis increasing the fibrinolytic enzyme activity of Bacillus subtilis[J]. Chinese Agricultural Science Bulletin, 2020, 36(35): 28-36. doi:  10.11924/j.issn.1000-6850.casb20191201001
    [39] 李荞荞. 重离子辐照诱变干酪乳杆菌优良菌株选育及在抗结肠癌中的应用[D]. 北京: 中国科学院大学, 2020

    LI Q Q. Screening of excellent Lactobacillus casei strains by heavy ion mutagenesis and its application in anti-colon cancer[D]. Beijing: University of Chinese Academy of Sciences, 2020.
    [40] 崔国艳, 陈五岭, 周美红. 激光诱变选育耐高温耐酸乳酸菌[J]. 中国酿造,2012,31(10):153−156. [CUI G Y, CHEN W L, ZHOU M H. Screening of the thermotolerant aciduric lactic acid bacteria by He-Ne laser[J]. China Brewing,2012,31(10):153−156. doi:  10.3969/j.issn.0254-5071.2012.10.041

    CUI G Y, CHEN W L, ZHOU M H. Screening of the thermotolerant aciduric lactic acid bacteria by He-Ne laser[J]. China Brewing, 2012, 31(10): 153-156. doi:  10.3969/j.issn.0254-5071.2012.10.041
    [41] QIANG W, LING R F, LUO W, et al. Mutation breeding of lycopene-producing strain Blakeslea trispora by a novel atmospheric and room temperature plasma (ARTP)[J]. Applied Biochemistry and Biotechnology,2014,174(1):452−460. doi:  10.1007/s12010-014-0998-8
    [42] LI J, SHEN J, SUN Z, et al. Discovery of several novel targets that enhance β-carotene production in Saccharomyces cerevisiae[J]. Frontiers in Microbiology,2017,8:1116. doi:  10.3389/fmicb.2017.01116
    [43] ZHOU S, LIU P, CHEN J, et al. Characterization of mutants of a tyrosine ammonia-lyase from Rhodotorula glutinis[J]. Applied Microbiology and Biotechnology,2016,100(24):10443−10452. doi:  10.1007/s00253-016-7672-8
    [44] LÜ X, SONG J, YU B, et al. High-throughput system for screening of high L-lactic acid-productivity strains in deep-well microtiter plates[J]. Bioprocess and Biosystems Engineering,2016,39(11):1737−1747. doi:  10.1007/s00449-016-1649-y
    [45] JIANG A L, HU W, LI W J, et al. Enhanced production of L-lactic acid by Lactobacillus thermophilus SRZ50 mutant generated by high-linear energy transfer heavy ion mutagenesis[J]. Engineering in Life Sciences,2018,18(9):626−634. doi:  10.1002/elsc.201800052
    [46] CHEN J, VESTERGAARD M, JENSEN T G, et al. Finding the needle in the haystack-the use of microfluidic droplet technology to identify vitamin-secreting lactic acid bacteria[J]. MBio,2017,8(3):e00526−17.
    [47] BONOMO M G, MILELLA L, MARTELLI G, et al. Stress response assessment of Lactobacillus sakei strains selected as potential autochthonous starter cultures by flow cytometry and nucleic acid double-staining analyses[J]. Journal of Applied Microbiology,2013,115(3):786−795. doi:  10.1111/jam.12271
    [48] DELOACHE W C, RUSS Z N, NARCROSS L, et al. An enzyme-coupled biosensor enables (S)-reticuline production in yeast from glucose[J]. Nature Chemical Biology,2015,11(7):465−471. doi:  10.1038/nchembio.1816
    [49] BELLALI S, LAGIER J C, MILLION M, et al. Running after ghosts: Are dead bacteria the dark matter of the human gut microbiota[J]. Gut Microbes,2021,13(1):1897208. doi:  10.1080/19490976.2021.1897208
    [50] MICHENER J K, THODEY K, LIANG J C, et al. Applications of genetically-encoded biosensors for the construction and control of biosynthetic pathways[J]. Metabolic Engineering,2012,14(3):212−222. doi:  10.1016/j.ymben.2011.09.004
    [51] RAMAN S, ROGERS J K, TAYLOR N D, et al. Evolution-guided optimization of biosynthetic pathways[J]. Proceedings of the National Academy of Sciences,2014,111(50):17803−17808. doi:  10.1073/pnas.1409523111
    [52] LIM H G, JANG S, JANG S, et al. Design and optimization of genetically encoded biosensors for high-throughput screening of chemicals[J]. Current Opinion in Biotechnology,2018,54:18−25. doi:  10.1016/j.copbio.2018.01.011
    [53] CHEN X, ZHANG D, SU N, et al. Visualizing RNA dynamics in live cells with bright and stable fluorescent RNAs[J]. Nature Biotechnology,2019,37(11):1287−1293. doi:  10.1038/s41587-019-0249-1
    [54] MEYER A, PELLAUX R, POTOT S, et al. Optimization of a whole-cell biocatalyst by employing genetically encoded product sensors inside nanolitre reactors[J]. Nature Chemistry,2015,7(8):673−678. doi:  10.1038/nchem.2301
    [55] SJOSTROM S L, BAI Y, HUANG M, et al. High-throughput screening for industrial enzyme production hosts by droplet microfluidics[J]. Lab on A Chip,2014,14(4):806−813. doi:  10.1039/C3LC51202A
    [56] ABATE A R, HUNG T, SPERLING R A, et al. DNA sequence analysis with droplet-based microfluidics[J]. Lab on A Chip,2013,13(24):4864−4869. doi:  10.1039/c3lc50905b
    [57] VALIHRACH L, ANDROVIC P, KUBISTA M. Platforms for single-cell collection and analysis[J]. International Journal of Molecular Sciences,2018,19(3):807. doi:  10.3390/ijms19030807
    [58] GARALDE D R, SNELL E A, JACHIMOWICZ D, et al. Highly parallel direct RNA sequencing on an array of nanopores[J]. Nature Methods,2018,15(3):201−206. doi:  10.1038/nmeth.4577
    [59] MALICKI J, JO H, WEI X, et al. Analysis of gene function in the zebrafish retina[J]. Methods,2002,28(4):427−438. doi:  10.1016/S1046-2023(02)00262-1
    [60] GALLEGO I I. Use of zebrafish to evaluate the probiotic efficacy of lactic acid bacteria[D]. Universidad Del País Vasco-Euskal Herriko Unibertsitatea, 2017.
    [61] LOVE D R, PICHLER F B, DODD A, et al. Technology for high-throughput screens: the present and future using zebrafish[J]. Current Opinion in Biotechnology,2004,15(6):564−571. doi:  10.1016/j.copbio.2004.09.004
    [62] GILL M S, OLSEN A, SAMPAYO J N, et al. An automated high-throughput assay for survival of the nematode Caenorhabditis elegans[J]. Free Radical Biology and Medicine,2003,35(6):558−565. doi:  10.1016/S0891-5849(03)00328-9
    [63] HUNT P R, OLEJNIK N, SPRANDO R L. Toxicity ranking of heavy metals with screening method using adult Caenorhabditis elegans and propidium iodide replicates toxicity ranking in rat[J]. Food and Chemical Toxicology,2012,50(9):3280−3290. doi:  10.1016/j.fct.2012.06.051
    [64] WÄHLBY C, CONERY A L, BRAY M A, et al. High-and low-throughput scoring of fat mass and body fat distribution in C. elegans[J]. Methods,2014,68(3):492−499. doi:  10.1016/j.ymeth.2014.04.017
    [65] PINO E C, WEBSTER C M, CARR C E, et al. Biochemical and high throughput microscopic assessment of fat mass in Caenorhabditis elegans[J]. Journal of Visualized Experiments,2013(73):e50180.
    [66] RODA A. Discovery and development of the green fluorescent protein, GFP: The 2008 Nobel Prize[J]. Analytical and Bioanalytical Chemistry,2010,396(5):1619−1622. doi:  10.1007/s00216-010-3452-y
    [67] SANDERS J K, JACKSON S E. The discovery and development of the green fluorescent protein, GFP[J]. Chemical Society Reviews,2009,38(10):2821−2822. doi:  10.1039/b917331p
    [68] 倪彩新, 金星, 周炜, 等. 利用线虫模型评价乳酸菌体内抗氧化能力及其与体外抗氧化参数的对比[J]. 食品与发酵工业,2019,45(3):21−27. [NI C X, JIN X, ZHOU W, et al. Evaluation of antioxidant capacity of lactic acid bacteria in vivo using Caenorhabditis elegants and comparison with its antioxidant parameters[J]. Food and Fermentation Industries,2019,45(3):21−27. doi:  10.13995/j.cnki.11-1802/ts.018228

    NI C X, JIN X, ZHOU W, et al. Evaluation of antioxidant capacity of lactic acid bacteria in vivo using Caenorhabditis elegants and comparison with its antioxidant parameters[J]. Food and fermentation industries, 2019, 45(3): 21-27. doi:  10.13995/j.cnki.11-1802/ts.018228
    [69] CHASTON J M, NEWELL P D, DOUGLAS A E. Metagenome-wide association of microbial determinants of host phenotype in Drosophila melanogaster[J]. MBio,2014,5(5):e01631−14.
    [70] PANDEY U B, NICHOLS C D. Human disease models in Drosophila melanogaster and the role of the fly in therapeutic drug discovery[J]. Pharmacological Reviews,2011,63(2):411−436. doi:  10.1124/pr.110.003293
    [71] GÓMEZ E, MARTÍN F, NOGACKA A, et al. Impact of probiotics on development and behaviour in Drosophila melanogaster: A potential in vivo model to assess probiotics[J]. Beneficial Microbes,2019,10(2):179−188. doi:  10.3920/BM2018.0012
  • 加载中
计量
  • 文章访问数:  42
  • HTML全文浏览量:  22
  • PDF下载量:  8
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-09-19
  • 网络出版日期:  2023-05-22
  • 刊出日期:  2023-07-01

目录

    /

    返回文章
    返回