Effect of Homogenization Assisted with Enzymatic Treatment on the Structural and Functional Properties of Soybean Protein Nanoparticles
-
摘要: 本文以商业大豆分离蛋白(Soy protein isolate,SPI)为原料,分别通过酶解、均质联合酶解制备了蛋白纳米颗粒(Soy protein nanoparticles,SPNPs),对比分析了SPNPs的粒径、多相分散系数及微观形态、傅里叶红外光谱、内源荧光等结构特征,以及内部作用力、表面疏水性、Zeta电位、两亲特性、乳化性与起泡性等物化特性。研究发现:SPI粒径较大(230.00 nm),低水解度(3%)酶解和均质联合酶解处理制备的SPNPs粒径减小(64.20~144.80 nm),呈小球形。二级结构分析表明均质联合酶解制备SPNPs的α-螺旋/β-折叠比例(约45%)较高。与单一酶解所制SPNPs相比,均质联合酶解制备的SPNPs在中性条件时具有更强负电荷(−33 mV),表面疏水性更高,乳化和起泡性能更强。内部作用力结果表明疏水相互作用主导了纳米颗粒结构的形成,氢键和二硫键分别为维持纳米颗粒外部和内部结构的主要作用力。上述结果表明均质协同酶解处理为绿色制备多功能蛋白纳米颗粒提供了新的解决思路。
-
关键词:
- 大豆蛋白纳米颗粒(SPNPs) /
- 均质-酶解 /
- 结构 /
- 功能特性
Abstract: The commercial soy protein isolate (SPI) was used as raw material to prepare soy protein nanoparticles (SPNPs) through either single enzymatic treatment or homogenization assisted with enzymatic treatment. The structural characteristics of particle size, polydispersity index, morphology, Fourier transform infrared and endogenous fluorescence spectra of SPNPs, as well as the physicochemical properties of the pattern of intra-particle interactive forces, surface hydrophobicity, Zeta-potential, amphipathy, emulsifying, and foaming properties of SPNPs were comparably analyzed. It was found that the SPI with large particle size (230.00 nm), the SPNPs prepared by either enzymatic or homogenization assisted with enzymatic treatment at low degree (3%) of hydrolysis (DH) were spherical and showed smaller size distributions with z-average size from 64.20 to 144.80 nm. The analysis of secondary structure implied that SPNPs prepared by homogenization assisted with enzymatic treatment showed an increased ratio of α-helix/β-sheet to a narrow range of around 45%. Compared with SPNPs prepared by single enzymatic treatment, the SPNPs showed a stronger negative charge (−33 mV) under neutral conditions and higher H0, suggesting better emulsifying and foaming properties of the present SPNPs. Meanwhile, the results of the interactive force indicated that the hydrophobic interactions mainly dominated the structure formation of SPNPs, along with hydrogen bonds and disulfide bonds mainly stabilizing the external and internal structure of nanoparticles, respectively. The above results indicated that homogenization assisted with enzymatic treatment provided new solutions for the green preparation of multifunctional protein nanoparticles. -
表 1 SPI及SPNPs的平均粒径和多相分散系数
Table 1. The z-average size and PDI of SPI and SPNPs
表 2 SPI及SPNPs的二级结构组成
Table 2. The composition of secondary structures of SPI and SPNPs
样品 α-螺旋(%) β-折叠(%) β-转角(%) 无规则卷曲(%) α-螺旋/β-折叠(%) SPI 14.77±0.05d 43.34±0.01cd 20.44±0.30b 21.46±0.01a 34.08±0.39e SPIH 15.70±0.16c 43.75±0.22c 22.99±0.60a 17.56±0.23c 35.89±0.33d SPNP-E3 17.11±0.10b 43.40±0.03cd 20.33±0.20b 19.14±0.34b 39.42±0.11c SPNP-E6 16.71±0.02b 46.35±0.50a 18.64±0.03cd 18.30±0.76bc 36.05±0.31d SPNP-HE3 20.09±0.05a 42.59±0.23d 19.05±0.06c 18.27±0.12bc 47.17±0.19a SPNP-HE6 19.55±0.04a 44.78±0.10b 18.11±0.17d 17.56±0.02c 43.66±0.21b 表 3 SPI及SPNPs的溶解性及持水/持油性
Table 3. The solubility and WHC/OHC of SPI and SPNPs
样品 溶解性(%) 持水性(g/g) 持油性(g/g) SPI 44.36±0.01c 13.19±1.04a 2.19±0.49c SPIH 68.20±1.02b 9.79±0.35b 4.48±0.77b SPNP-E3 95.06±1.11a 接近0 4.68±0.15b SPNP-E6 93.75±0.56a 接近0 4.57±0.12b SPNP-HE3 95.50±0.06a 接近0 6.83±0.67a SPNP-HE6 93.70±0.92a 接近0 6.40±0.42a 表 4 SPI及SPNPs的乳化性、乳液稳定性和起泡性、泡沫稳定性
Table 4. The EAI, ESI and FAI, FSI of SPI and SPNPs
样品 乳化性(m2/g) 乳液稳定性(min) 起泡性(%) 泡沫稳定性(%) SPI 39.66±0.43f 18.44±0.14e 54.44±1.57d 69.42±2.00b SPIH 46.57±0.51e 33.37±0.66d 67.78±0.77c 86.88±0.30a SPNP-E3 58.73±0.57c 51.17±0.49c 70.78±0.46c 60.75±4.14c SPNP-E6 51.23±0.81d 29.63±0.56de 80.47±1.31b 81.66±1.69a SPNP-HE3 66.48±0.50a 126.27±3.36a 100.09±3.49a 85.89±0.05a SPNP-HE6 61.64±0.67b 71.80±0.13b 108.28±2.13a 90.56±0.79a -
[1] 张远红. 大豆肽基纳米颗粒的制备、界面行为及功能性输送的研究[D]. 广州: 华南理工大学, 2018: 20−30ZHANG Y H. Fabrication, interfacial behaviors and functional delivery of soy peptide-based nanoparticles[D]. Guangzhou: South China University of Technology, 2018: 20−30. [2] 杜翠. 大豆酶解聚集体的改性及其在植脂奶油中的应用[D]. 广州: 华南理工大学, 2020: 27−36DU C. The modification of insoluble soy peptide aggregate (ISPA): Application in the whipped cream[D]. Guangzhou: South China University of Technology, 2020: 27−36. [3] SOZER N, KOKINI J L. Nanotechnology and its applications in the food sector[J]. Trends in Biotechnology,2008,27(2):82−89. [4] JONES O G, MCCLEMENTS D J. Functional biopolymer particles: Design, fabrication, and applications[J]. Comprehensive Reviews in Food Science and Food Safety,2010,9(4):374−397. doi: 10.1111/j.1541-4337.2010.00118.x [5] YUAN D, ZHOU F B, SHEN P H, et al. Self-assembled soy protein nanoparticles by partial enzymatic hydrolysis for pH-Driven encapsulation and delivery of hydrophobic cargo curcumin[J]. Food Hydrocolloids,2021,120:106759. doi: 10.1016/j.foodhyd.2021.106759 [6] LI J M, CHEN Z. Fabrication of heat-treated soybean protein isolate-EGCG complex nanoparticle as a functional carrier for curcumin[J]. LWT-Food Science and Technology,2022,159:113059. doi: 10.1016/j.lwt.2021.113059 [7] ROUFEGARINEJAD L. Development and characterization of the reinforced soy protein isolate-based nanocomposite film with CuO and TiO2 nanoparticles[J]. Journal of Polymers and the Environment,2022,30(6):2507−2515. doi: 10.1007/s10924-022-02374-9 [8] ZHAO M M, LUO D H, CU L J, et al. Effects of limited enzymatic hydrolysis with pepsin and high-pressure homogenization on the functional properties of soybean protein isolate[J]. LWT-Food Science and Technology,2012,46(2):453−459. doi: 10.1016/j.lwt.2011.12.001 [9] CHEN L, CHEN J S, REN J Y, et al. Modifications of soy protein isolates using combined extrusion pre-treatment and controlled enzymatic hydrolysis for improved emulsifying properties[J]. Food Hydrocolloids,2011,25(5):887−897. doi: 10.1016/j.foodhyd.2010.08.013 [10] HINMAN J J, SUSLICK K S. Nanostructured materials synthesis using ultrasound[J]. Topics in Current Chemistry,2017,375(1):12. doi: 10.1007/s41061-016-0100-9 [11] DONG X H, ZHAO M M, YANG B, et al. Effects of combined high-pressure homogenization and enzymatic treatment on extraction yield, hydrolysis and function properties of peanut proteins[J]. Innovative Food Science and Emerging Technologies,2011,12(4):478−483. doi: 10.1016/j.ifset.2011.07.002 [12] ZHANG L T, PAN Z, SHEN K Q, et al. Influence of ultrasound-assisted alkali treatment on the structural properties and functionalities of rice protein[J]. Journal of Cereal Science,2018,79:204−209. doi: 10.1016/j.jcs.2017.10.013 [13] RYMER S J, TENDLER S J, BOSQUILLON C, et al. Self-assembling peptides and their potential applications in biomedicine[J]. Therapeutic Delivery,2011,2(8):1043−1056. doi: 10.4155/tde.11.74 [14] ZHANG Y H, ZHOU F B, ZHAO M M, et al. Soy peptide nanoparticles by ultrasound-induced self-assembly of large peptide aggregates and their role on emulsion stability[J]. Food Hydrocolloids,2018,74:62−71. doi: 10.1016/j.foodhyd.2017.07.021 [15] HAMLEY I W. Self-assembly of amphiphilic peptides[J]. Soft Matter,2011,7(9):4122−4138. doi: 10.1039/c0sm01218a [16] ABBAS M, ZOU Q L, LI S K, et al. Self-Assembled peptide and protein-based nanomaterials for antitumor photodynamic and photothermal therapy[J]. Advanced Materials,2017,29(12):1605021. doi: 10.1002/adma.201605021 [17] ZHANG Y H, ZHOU F B, ZENG X F, et al. pH-Driven-assembled soy peptide nanoparticles as particulate emulsifier for oil-in-water Pickering emulsion and their potential for encapsulation of vitamin D3[J]. Food Chemistry,2022,383:132489. doi: 10.1016/j.foodchem.2022.132489 [18] 杨盛楠, 翟爱华. 高压均质对大豆分离蛋白功能性质的影响[J]. 中国酿造,2014,33(12):89−93. [YANG S N, ZHAI A H. Effect of high pressure homogenization on functional properties of soy protein isolate[J]. China Brewing,2014,33(12):89−93. doi: 10.11882/j.issn.0254-5071.2014.12.018YANG S N, ZHAI A H. Effect of high pressure homogenization on functional properties of soy protein isolate[J]. China Brewing, 2014, 33(12): 89-93. doi: 10.11882/j.issn.0254-5071.2014.12.018 [19] XU Y Y, WANG G R, WANG X B, et al. Effects of homogenization on the molecular flexibility and emulsifying properties of soy protein isolate[J]. Food Science and Biotechnology,2018,27(5):1293−1299. doi: 10.1007/s10068-018-0361-x [20] SUN C C, LIU R, WU T, et al. Combined superfine grinding and heat-shearing treatment for the microparticulation of whey proteins[J]. Food and Bioprocess Technology,2016,9(2):378−386. doi: 10.1007/s11947-015-1629-2 [21] 刘慕君, 于国萍, 齐微微, 等. 植酸酶-木瓜蛋白酶协同改性对大豆分离蛋白冻融稳定性的影响[J]. 中国食品学报,2018,18(2):112−116. [LIU M J, YU G P, QI W W, et al. Effect of phytase and papain hydrolysis on freeze-thaw stabilization of soy protein isolate[J]. Journal of Chinese Institute of Food Science and Technology,2018,18(2):112−116. doi: 10.16429/j.1009-7848.2018.02.014LIU M J, YU G P, QI W W, et al. Effect of phytase and papain hydrolysis on freeze-thaw stabilization of soy protein isolate[J]. Journal of Chinese Institute of Food Science and Technology, 2018, 18(2): 112-116. doi: 10.16429/j.1009-7848.2018.02.014 [22] LIU R, WANG L G, LIU Y, et al. Fabricating soy protein hydrolysate/xanthan gum as fat replacer in ice cream by combined enzymatic and heat-shearing treatment[J]. Food Hydrocolloids,2018,81:39−47. doi: 10.1016/j.foodhyd.2018.01.031 [23] 胡晓利, 布冠好. 高压均质与酶法联合改性对大豆蛋白抗原性及结构的影响[J]. 河南工业大学学报,2018,39(6):29−35. [HU X L, BU G H. Effects of combination of high pressure homogenization and enzymatic modification on the antigenicity and structure of soybean protein isolates[J]. Journal of Henan University of Technology (Natural Science Edition),2018,39(6):29−35.HU X L, BU G H. Effects of combination of high pressure homogenization and enzymatic modification on the antigenicity and structure of soybean protein isolates[J]. Journal of Henan University of Technology (Natural Science Edition), 2018, 39(6): 29-35. [24] 张晶. 均质及酶解对大米蛋白功能特性的影响及机理的初探[D]. 安徽: 安徽农业大学, 2017: 44−54ZHANG J. The effects of homogenization and enzymatic hydrolysis on the functional properties of rice protein and preliminary study on its mechanism[D]. Anhui Agricultural University, 2017: 44−54. [25] SHEN P H, ZHOU F B, ZHANG Y H, et al. Formation and characterization of soy protein nanoparticles by controlled partial enzymatic hydrolysis[J]. Food Hydrocolloids,2020,105:105844. doi: 10.1016/j.foodhyd.2020.105844 [26] NIELSEN P M, PETERSEN D, DAMBMANN C. Improved method for determining food protein degree of hydrolysis[J]. Journal of Food Science,2001,66(5):642−646. doi: 10.1111/j.1365-2621.2001.tb04614.x [27] DU C, CAI Y J, LIU T X, et al. Physicochemical, interfacial and emulsifying properties of insoluble soy peptide aggregate: Effect of homogenization and alkaline-treatment[J]. Food Hydrocolloids,2020,109:106125. doi: 10.1016/j.foodhyd.2020.106125 [28] 孙冰玉, 李志敏, 刘琳琳, 等. 高压均质技术对大豆蛋白结构和发酵特性影响研究进展[J]. 新宝登录入口(中国)有限公司,2022,43(13):425−433. [SUN B Y, LI Z M, LIU L L, et al. Research progress on effects of high pressure homogenization on structure and fermentation characteristics of soy protein[J]. Science and Technology of Food Industry,2022,43(13):425−433. doi: 10.13386/j.issn1002-0306.2021070123SUN B Y, LI Z M, LIU L L, et al. Research progress on effects of high pressure homogenization on structure and fermentation characteristics of soy protein[J]. Science and Technology of Food Industry, 2022, 43(13): 425-433. doi: 10.13386/j.issn1002-0306.2021070123 [29] CARULLO D, DONSI F, FERRARI G. Influence of high-pressure homogenization on structural properties and enzymatic hydrolysis of milk proteins[J]. LWT-Food Science and Technology,2020,130:109657. doi: 10.1016/j.lwt.2020.109657 [30] ZHANG Y H, ZHOU F B, SHEN P H, et al. Influence of thermal treatment on oil-water interfacial properties and emulsion stabilization prepared by sono-assembled soy peptide nanoparticles[J]. Food Hydrocolloids,2020,103:105646. doi: 10.1016/j.foodhyd.2020.105646 [31] YE J P, DENG L P, WANG Y R, et al. Impact of rutin on the foaming properties of soybean protein: Formation and characterization of flavonoid-protein complexes[J]. Food Chemistry,2021,362:130238. doi: 10.1016/j.foodchem.2021.130238 -