• 食品科学与工程领域高质量科技期刊分级目录第一方阵T1
  • Scopus
  • FSTA
  • 北大核心期刊
  • 中国核心学术期刊RCCSE
  • DOAJ
  • JST China
  • 中国精品科技期刊
  • 中国农业核心期刊
  • CA
  • WJCI
  • 中国科技核心期刊CSTPCD
  • 中国生物医学SinoMed
中国精品科技期刊2020 食品青年科学家峰会

均质联合酶解对大豆蛋白纳米颗粒结构与功能特性的影响

王金鸽 蔡勇建 刘俊梅 赵强忠

王金鸽,蔡勇建,刘俊梅,等. 均质联合酶解对大豆蛋白纳米颗粒结构与功能特性的影响[J]. 新宝登录入口(中国)有限公司,2023,44(13):85−93. doi:  10.13386/j.issn1002-0306.2022090179
引用本文: 王金鸽,蔡勇建,刘俊梅,等. 均质联合酶解对大豆蛋白纳米颗粒结构与功能特性的影响[J]. 新宝登录入口(中国)有限公司,2023,44(13):85−93. doi:  10.13386/j.issn1002-0306.2022090179
WANG Jinge, CAI Yongjian, LIU Junmei, et al. Effect of Homogenization Assisted with Enzymatic Treatment on the Structural and Functional Properties of Soybean Protein Nanoparticles[J]. Science and Technology of Food Industry, 2023, 44(13): 85−93. (in Chinese with English abstract). doi:  10.13386/j.issn1002-0306.2022090179
Citation: WANG Jinge, CAI Yongjian, LIU Junmei, et al. Effect of Homogenization Assisted with Enzymatic Treatment on the Structural and Functional Properties of Soybean Protein Nanoparticles[J]. Science and Technology of Food Industry, 2023, 44(13): 85−93. (in Chinese with English abstract). doi:  10.13386/j.issn1002-0306.2022090179

均质联合酶解对大豆蛋白纳米颗粒结构与功能特性的影响

doi: 10.13386/j.issn1002-0306.2022090179
基金项目: 国家自然科学基金(32072148,32101866);“十四五”国家重点研发计划(2021YFD2100102)。
详细信息
    作者简介:

    王金鸽(1997−),女,硕士研究生,研究方向:食品乳浊体系,E-mail:jgwang97@163.com

    通讯作者:

    刘俊梅(1973−),女,博士,教授,研究方向:功能性食品,E-mail:spring430817@163.com

    赵强忠(1976−),男,博士,教授,研究方向:食品乳浊体系,E-mail:qzzhao@scut.edu.cn

  • 中图分类号: TS201.7

Effect of Homogenization Assisted with Enzymatic Treatment on the Structural and Functional Properties of Soybean Protein Nanoparticles

  • 摘要: 本文以商业大豆分离蛋白(Soy protein isolate,SPI)为原料,分别通过酶解、均质联合酶解制备了蛋白纳米颗粒(Soy protein nanoparticles,SPNPs),对比分析了SPNPs的粒径、多相分散系数及微观形态、傅里叶红外光谱、内源荧光等结构特征,以及内部作用力、表面疏水性、Zeta电位、两亲特性、乳化性与起泡性等物化特性。研究发现:SPI粒径较大(230.00 nm),低水解度(3%)酶解和均质联合酶解处理制备的SPNPs粒径减小(64.20~144.80 nm),呈小球形。二级结构分析表明均质联合酶解制备SPNPs的α-螺旋/β-折叠比例(约45%)较高。与单一酶解所制SPNPs相比,均质联合酶解制备的SPNPs在中性条件时具有更强负电荷(−33 mV),表面疏水性更高,乳化和起泡性能更强。内部作用力结果表明疏水相互作用主导了纳米颗粒结构的形成,氢键和二硫键分别为维持纳米颗粒外部和内部结构的主要作用力。上述结果表明均质协同酶解处理为绿色制备多功能蛋白纳米颗粒提供了新的解决思路。
  • 图  1  不同酶酶解SPI的水解度随时间的变化规律

    Figure  1.  The DH of SPI by different enzymes as a function of hydrolysis time

    图  2  SPI及SPNPs的FE-SEM形貌观察

    Figure  2.  The FE-SEM microscopic observation of SPI and SPNPs

    图  3  SPI及SPNPs的内源荧光光谱图

    Figure  3.  The endogenous fluorescence spectra of SPI and SPNPs

    图  4  大豆蛋白纳米颗粒在不同蛋白变性溶剂中的外观和粒径

    Figure  4.  The appearance and particle size of SPNPs in different protein denaturant solutions

    注:1:去离子水;2:DTT;3:SDS;4:尿素;5:DTT+SDS;6:DTT+尿素;7:SDS+尿素;8:DTT+SDS+尿素;A、B、C、D分别代表:SPNP-E3、SPNP-E6、SPNP-HE3、SPNP-HE6;不同小写字母代表同一样品在不同溶剂中的粒径差异显著(P<0.05)。

    图  5  SPI及SPNPs的表面疏水性

    Figure  5.  The H0 of SPI and SPNPs

    注:不同字母代表样品间差异显著(P<0.05);图6同。

    图  6  SPI及SPNPs的Zeta电位

    Figure  6.  The Zeta potential of SPI and SPNPs

    表  1  SPI及SPNPs的平均粒径和多相分散系数

    Table  1.   The z-average size and PDI of SPI and SPNPs

    样品平均粒径(nm)PDI
    SPI230.00±1.54b0.78±0.03a
    SPIH181.70±21.50c0.47±0.01b
    SPNP-E3144.80±1.41d0.27±0.00c
    SPNP-E6260.30±8.44a0.29±0.01c
    SPNP-HE364.20±4.32f0.20±0.00c
    SPNP-HE6106.10±2.36e0.24±0.00c
    注:同列不同小写字母代表样品间差异显著(P<0.05);表2~表4同。
    下载: 导出CSV

    表  2  SPI及SPNPs的二级结构组成

    Table  2.   The composition of secondary structures of SPI and SPNPs

    样品α-螺旋(%)β-折叠(%)β-转角(%)无规则卷曲(%)α-螺旋/β-折叠(%)
    SPI14.77±0.05d43.34±0.01cd20.44±0.30b21.46±0.01a34.08±0.39e
    SPIH15.70±0.16c43.75±0.22c22.99±0.60a17.56±0.23c35.89±0.33d
    SPNP-E317.11±0.10b43.40±0.03cd20.33±0.20b19.14±0.34b39.42±0.11c
    SPNP-E616.71±0.02b46.35±0.50a18.64±0.03cd18.30±0.76bc36.05±0.31d
    SPNP-HE320.09±0.05a42.59±0.23d19.05±0.06c18.27±0.12bc47.17±0.19a
    SPNP-HE619.55±0.04a44.78±0.10b18.11±0.17d17.56±0.02c43.66±0.21b
    下载: 导出CSV

    表  3  SPI及SPNPs的溶解性及持水/持油性

    Table  3.   The solubility and WHC/OHC of SPI and SPNPs

    样品溶解性(%)持水性(g/g)持油性(g/g)
    SPI44.36±0.01c13.19±1.04a2.19±0.49c
    SPIH68.20±1.02b9.79±0.35b4.48±0.77b
    SPNP-E395.06±1.11a接近04.68±0.15b
    SPNP-E693.75±0.56a接近04.57±0.12b
    SPNP-HE395.50±0.06a接近06.83±0.67a
    SPNP-HE693.70±0.92a接近06.40±0.42a
    下载: 导出CSV

    表  4  SPI及SPNPs的乳化性、乳液稳定性和起泡性、泡沫稳定性

    Table  4.   The EAI, ESI and FAI, FSI of SPI and SPNPs

    样品乳化性(m2/g)乳液稳定性(min)起泡性(%)泡沫稳定性(%)
    SPI39.66±0.43f18.44±0.14e54.44±1.57d69.42±2.00b
    SPIH46.57±0.51e33.37±0.66d67.78±0.77c86.88±0.30a
    SPNP-E358.73±0.57c51.17±0.49c70.78±0.46c60.75±4.14c
    SPNP-E651.23±0.81d29.63±0.56de80.47±1.31b81.66±1.69a
    SPNP-HE366.48±0.50a126.27±3.36a100.09±3.49a85.89±0.05a
    SPNP-HE661.64±0.67b71.80±0.13b108.28±2.13a90.56±0.79a
    下载: 导出CSV
  • [1] 张远红. 大豆肽基纳米颗粒的制备、界面行为及功能性输送的研究[D]. 广州: 华南理工大学, 2018: 20−30

    ZHANG Y H. Fabrication, interfacial behaviors and functional delivery of soy peptide-based nanoparticles[D]. Guangzhou: South China University of Technology, 2018: 20−30.
    [2] 杜翠. 大豆酶解聚集体的改性及其在植脂奶油中的应用[D]. 广州: 华南理工大学, 2020: 27−36

    DU C. The modification of insoluble soy peptide aggregate (ISPA): Application in the whipped cream[D]. Guangzhou: South China University of Technology, 2020: 27−36.
    [3] SOZER N, KOKINI J L. Nanotechnology and its applications in the food sector[J]. Trends in Biotechnology,2008,27(2):82−89.
    [4] JONES O G, MCCLEMENTS D J. Functional biopolymer particles: Design, fabrication, and applications[J]. Comprehensive Reviews in Food Science and Food Safety,2010,9(4):374−397. doi:  10.1111/j.1541-4337.2010.00118.x
    [5] YUAN D, ZHOU F B, SHEN P H, et al. Self-assembled soy protein nanoparticles by partial enzymatic hydrolysis for pH-Driven encapsulation and delivery of hydrophobic cargo curcumin[J]. Food Hydrocolloids,2021,120:106759. doi:  10.1016/j.foodhyd.2021.106759
    [6] LI J M, CHEN Z. Fabrication of heat-treated soybean protein isolate-EGCG complex nanoparticle as a functional carrier for curcumin[J]. LWT-Food Science and Technology,2022,159:113059. doi:  10.1016/j.lwt.2021.113059
    [7] ROUFEGARINEJAD L. Development and characterization of the reinforced soy protein isolate-based nanocomposite film with CuO and TiO2 nanoparticles[J]. Journal of Polymers and the Environment,2022,30(6):2507−2515. doi:  10.1007/s10924-022-02374-9
    [8] ZHAO M M, LUO D H, CU L J, et al. Effects of limited enzymatic hydrolysis with pepsin and high-pressure homogenization on the functional properties of soybean protein isolate[J]. LWT-Food Science and Technology,2012,46(2):453−459. doi:  10.1016/j.lwt.2011.12.001
    [9] CHEN L, CHEN J S, REN J Y, et al. Modifications of soy protein isolates using combined extrusion pre-treatment and controlled enzymatic hydrolysis for improved emulsifying properties[J]. Food Hydrocolloids,2011,25(5):887−897. doi:  10.1016/j.foodhyd.2010.08.013
    [10] HINMAN J J, SUSLICK K S. Nanostructured materials synthesis using ultrasound[J]. Topics in Current Chemistry,2017,375(1):12. doi:  10.1007/s41061-016-0100-9
    [11] DONG X H, ZHAO M M, YANG B, et al. Effects of combined high-pressure homogenization and enzymatic treatment on extraction yield, hydrolysis and function properties of peanut proteins[J]. Innovative Food Science and Emerging Technologies,2011,12(4):478−483. doi:  10.1016/j.ifset.2011.07.002
    [12] ZHANG L T, PAN Z, SHEN K Q, et al. Influence of ultrasound-assisted alkali treatment on the structural properties and functionalities of rice protein[J]. Journal of Cereal Science,2018,79:204−209. doi:  10.1016/j.jcs.2017.10.013
    [13] RYMER S J, TENDLER S J, BOSQUILLON C, et al. Self-assembling peptides and their potential applications in biomedicine[J]. Therapeutic Delivery,2011,2(8):1043−1056. doi:  10.4155/tde.11.74
    [14] ZHANG Y H, ZHOU F B, ZHAO M M, et al. Soy peptide nanoparticles by ultrasound-induced self-assembly of large peptide aggregates and their role on emulsion stability[J]. Food Hydrocolloids,2018,74:62−71. doi:  10.1016/j.foodhyd.2017.07.021
    [15] HAMLEY I W. Self-assembly of amphiphilic peptides[J]. Soft Matter,2011,7(9):4122−4138. doi:  10.1039/c0sm01218a
    [16] ABBAS M, ZOU Q L, LI S K, et al. Self-Assembled peptide and protein-based nanomaterials for antitumor photodynamic and photothermal therapy[J]. Advanced Materials,2017,29(12):1605021. doi:  10.1002/adma.201605021
    [17] ZHANG Y H, ZHOU F B, ZENG X F, et al. pH-Driven-assembled soy peptide nanoparticles as particulate emulsifier for oil-in-water Pickering emulsion and their potential for encapsulation of vitamin D3[J]. Food Chemistry,2022,383:132489. doi:  10.1016/j.foodchem.2022.132489
    [18] 杨盛楠, 翟爱华. 高压均质对大豆分离蛋白功能性质的影响[J]. 中国酿造,2014,33(12):89−93. [YANG S N, ZHAI A H. Effect of high pressure homogenization on functional properties of soy protein isolate[J]. China Brewing,2014,33(12):89−93. doi:  10.11882/j.issn.0254-5071.2014.12.018

    YANG S N, ZHAI A H. Effect of high pressure homogenization on functional properties of soy protein isolate[J]. China Brewing, 2014, 33(12): 89-93. doi:  10.11882/j.issn.0254-5071.2014.12.018
    [19] XU Y Y, WANG G R, WANG X B, et al. Effects of homogenization on the molecular flexibility and emulsifying properties of soy protein isolate[J]. Food Science and Biotechnology,2018,27(5):1293−1299. doi:  10.1007/s10068-018-0361-x
    [20] SUN C C, LIU R, WU T, et al. Combined superfine grinding and heat-shearing treatment for the microparticulation of whey proteins[J]. Food and Bioprocess Technology,2016,9(2):378−386. doi:  10.1007/s11947-015-1629-2
    [21] 刘慕君, 于国萍, 齐微微, 等. 植酸酶-木瓜蛋白酶协同改性对大豆分离蛋白冻融稳定性的影响[J]. 中国食品学报,2018,18(2):112−116. [LIU M J, YU G P, QI W W, et al. Effect of phytase and papain hydrolysis on freeze-thaw stabilization of soy protein isolate[J]. Journal of Chinese Institute of Food Science and Technology,2018,18(2):112−116. doi:  10.16429/j.1009-7848.2018.02.014

    LIU M J, YU G P, QI W W, et al. Effect of phytase and papain hydrolysis on freeze-thaw stabilization of soy protein isolate[J]. Journal of Chinese Institute of Food Science and Technology, 2018, 18(2): 112-116. doi:  10.16429/j.1009-7848.2018.02.014
    [22] LIU R, WANG L G, LIU Y, et al. Fabricating soy protein hydrolysate/xanthan gum as fat replacer in ice cream by combined enzymatic and heat-shearing treatment[J]. Food Hydrocolloids,2018,81:39−47. doi:  10.1016/j.foodhyd.2018.01.031
    [23] 胡晓利, 布冠好. 高压均质与酶法联合改性对大豆蛋白抗原性及结构的影响[J]. 河南工业大学学报,2018,39(6):29−35. [HU X L, BU G H. Effects of combination of high pressure homogenization and enzymatic modification on the antigenicity and structure of soybean protein isolates[J]. Journal of Henan University of Technology (Natural Science Edition),2018,39(6):29−35.

    HU X L, BU G H. Effects of combination of high pressure homogenization and enzymatic modification on the antigenicity and structure of soybean protein isolates[J]. Journal of Henan University of Technology (Natural Science Edition), 2018, 39(6): 29-35.
    [24] 张晶. 均质及酶解对大米蛋白功能特性的影响及机理的初探[D]. 安徽: 安徽农业大学, 2017: 44−54

    ZHANG J. The effects of homogenization and enzymatic hydrolysis on the functional properties of rice protein and preliminary study on its mechanism[D]. Anhui Agricultural University, 2017: 44−54.
    [25] SHEN P H, ZHOU F B, ZHANG Y H, et al. Formation and characterization of soy protein nanoparticles by controlled partial enzymatic hydrolysis[J]. Food Hydrocolloids,2020,105:105844. doi:  10.1016/j.foodhyd.2020.105844
    [26] NIELSEN P M, PETERSEN D, DAMBMANN C. Improved method for determining food protein degree of hydrolysis[J]. Journal of Food Science,2001,66(5):642−646. doi:  10.1111/j.1365-2621.2001.tb04614.x
    [27] DU C, CAI Y J, LIU T X, et al. Physicochemical, interfacial and emulsifying properties of insoluble soy peptide aggregate: Effect of homogenization and alkaline-treatment[J]. Food Hydrocolloids,2020,109:106125. doi:  10.1016/j.foodhyd.2020.106125
    [28] 孙冰玉, 李志敏, 刘琳琳, 等. 高压均质技术对大豆蛋白结构和发酵特性影响研究进展[J]. 新宝登录入口(中国)有限公司,2022,43(13):425−433. [SUN B Y, LI Z M, LIU L L, et al. Research progress on effects of high pressure homogenization on structure and fermentation characteristics of soy protein[J]. Science and Technology of Food Industry,2022,43(13):425−433. doi:  10.13386/j.issn1002-0306.2021070123

    SUN B Y, LI Z M, LIU L L, et al. Research progress on effects of high pressure homogenization on structure and fermentation characteristics of soy protein[J]. Science and Technology of Food Industry, 2022, 43(13): 425-433. doi:  10.13386/j.issn1002-0306.2021070123
    [29] CARULLO D, DONSI F, FERRARI G. Influence of high-pressure homogenization on structural properties and enzymatic hydrolysis of milk proteins[J]. LWT-Food Science and Technology,2020,130:109657. doi:  10.1016/j.lwt.2020.109657
    [30] ZHANG Y H, ZHOU F B, SHEN P H, et al. Influence of thermal treatment on oil-water interfacial properties and emulsion stabilization prepared by sono-assembled soy peptide nanoparticles[J]. Food Hydrocolloids,2020,103:105646. doi:  10.1016/j.foodhyd.2020.105646
    [31] YE J P, DENG L P, WANG Y R, et al. Impact of rutin on the foaming properties of soybean protein: Formation and characterization of flavonoid-protein complexes[J]. Food Chemistry,2021,362:130238. doi:  10.1016/j.foodchem.2021.130238
  • 加载中
图(6) / 表(4)
计量
  • 文章访问数:  27
  • HTML全文浏览量:  11
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-09-19
  • 网络出版日期:  2023-05-21
  • 刊出日期:  2023-07-01

目录

    /

    返回文章
    返回