• 食品科学与工程领域高质量科技期刊分级目录第一方阵T1
  • Scopus
  • FSTA
  • 北大核心期刊
  • 中国核心学术期刊RCCSE
  • DOAJ
  • JST China
  • 中国精品科技期刊
  • 中国农业核心期刊
  • CA
  • WJCI
  • 中国科技核心期刊CSTPCD
  • 中国生物医学SinoMed
中国精品科技期刊2020 食品青年科学家峰会

不同取代度羧甲基化罗汉果多糖的制备及生理活性研究

刘贵珍 杨志伟

刘贵珍,杨志伟. 不同取代度羧甲基化罗汉果多糖的制备及生理活性研究[J]. 新宝登录入口(中国)有限公司,2023,44(13):224−232. doi:  10.13386/j.issn1002-0306.2022090194
引用本文: 刘贵珍,杨志伟. 不同取代度羧甲基化罗汉果多糖的制备及生理活性研究[J]. 新宝登录入口(中国)有限公司,2023,44(13):224−232. doi:  10.13386/j.issn1002-0306.2022090194
LIU Guizhen, YANG Zhiwei. Preparation and Physiological Activity of Carboxymethylated Siraitia grosvenorii Polysaccharide with Different Degrees of Substitution[J]. Science and Technology of Food Industry, 2023, 44(13): 224−232. (in Chinese with English abstract). doi:  10.13386/j.issn1002-0306.2022090194
Citation: LIU Guizhen, YANG Zhiwei. Preparation and Physiological Activity of Carboxymethylated Siraitia grosvenorii Polysaccharide with Different Degrees of Substitution[J]. Science and Technology of Food Industry, 2023, 44(13): 224−232. (in Chinese with English abstract). doi:  10.13386/j.issn1002-0306.2022090194

不同取代度羧甲基化罗汉果多糖的制备及生理活性研究

doi: 10.13386/j.issn1002-0306.2022090194
详细信息
    作者简介:

    刘贵珍(1998−),女,硕士研究生,研究方向:功能食品,E-mail:1943338971@qq.com

    通讯作者:

    杨志伟(1973−),男,博士,副教授,研究方向:食品工程,E-mail:zhiwei_yang@sina.com

  • 中图分类号: TS201.1

Preparation and Physiological Activity of Carboxymethylated Siraitia grosvenorii Polysaccharide with Different Degrees of Substitution

  • 摘要: 为探讨不同羧甲基化取代度对罗汉果多糖(Siraitia grosvenorii polysaccharide,SGP)生理活性的影响,以SGP为原料,采用溶媒法制备羧甲基化罗汉果多糖(carboxymethylated Siraitia grosvenorii polysaccharide,CSGP)。分析氯乙酸浓度、反应时间、氢氧化钠浓度对取代度的影响,制备得到取代度为0.28~1.09的CSGP。对不同取代度的CSGP进行理化性质表征,并采用体外生理活性实验探讨不同取代度对降血糖活性和抗氧化活性的影响。结果表明:高效凝胶渗透色谱结果显示经过修饰的CSGP分子质量小于SGP;红外图谱在1317 cm−1处出现新的吸收峰,表明羧甲基成功引入多糖中;扫描电镜结果表明随着取代度的增加,CSGP微观表面形态变得更加破碎并出现卷曲化现象;刚果红实验显示高取代度的CSGP-H三股螺旋结构消失。体外生理活性实验表明:在质量浓度为6 mg/mL时具有中等取代度的CSGP-M对α-淀粉酶的抑制率、DPPH自由基、羟基自由基的清除率最高分别达到44.36%±1.30%、63.17%±2.07%、70.21%±1.89%,相较于SGP、CSGP-L、CSGP-H具有更好的降血糖活性和体外抗氧化活性。随着取代度的增加,CSGP-H对α-淀粉酶的抑制率、DPPH自由基、羟基自由基的清除率分别降到11.65%±0.26%、47.45%±0.79%、34.85%±0.78%。论文研究结果表明具有中等取代度的CSGP才可以发挥最佳的生理活性。
  • 图  1  氢氧化钠浓度对取代度的影响

    Figure  1.  Effect of sodium hydroxide concentration on the degree of substitution

    注:不同字母表示差异显著(P<0.05),图2~图3同。

    图  2  氯乙酸浓度对取代度的影响

    Figure  2.  Effect of chloroacetic acid addition on the degree of substitution

    图  3  反应时间对取代度的影响

    Figure  3.  Effect of reaction time on the degree of substitution

    图  4  不同取代度CSGP在不同NaOH浓度下最大吸收波长变化

    Figure  4.  Changes in absorption maximum (λmax) of CSGP with different degrees of substitution at various NaOH

    图  5  不同取代度CSGP红外图谱

    Figure  5.  Infrared spectra of CSGP with different degrees of substitution

    图  6  不同取代度CSGP扫描电镜图

    Figure  6.  SEM microscopy of CSGP with different degrees of substitution

    注:A:SGP;B:CSGP-L;C:CSGP-M;D:CSGP-H;下标1:1000×;2:2000×。

    图  7  不同取代度CSGP对α-淀粉酶的抑制作用

    Figure  7.  Inhibition of α-amylase by CSGP with different degrees of substitution

    注:图中不同大写字母表示同组样品不同浓度之间有显著差异(P<0.05),不同小写字母表示同一浓度不同样品之间有显著差异(P<0.05);图8图9同。

    图  8  不同取代度CSGP的DPPH自由基清除率

    Figure  8.  Scavenging rate of DPPH free radical by CSGP with different degrees of substitution

    图  9  不同取代度CSGP的羟基自由基清除率

    Figure  9.  Hydroxyl radical scavenging rate of CSGP with different degrees of substitution

    表  1  SGP羧甲基化修饰前后理化性质分析

    Table  1.   Analysis of physicochemical properties before and after SGP carboxymethylated modification

    样品总糖含量(%)糖醛酸含量(%)取代度分子量(kDa)
    SGP47.60±1.83a21.94±0.48a3.44×103a
    CSGP-L38.96±0.56b19.75±0.32b0.28±0.09c2.50×103d
    CSGP-M31.21±1.60d22.60±0.64a0.66±0.04b2.53×103c
    CSGP-H36.35±0.87c12.15±0.90c1.09±0.04a2.77×103b
    注:同列不同字母表示差异显著(P<0.05)。
    下载: 导出CSV
  • [1] 张立娟. 罗汉果多糖的提取、结构分析及抗氧化活性研究[D]. 天津: 天津科技大学, 2019.

    ZHANG L J. Extracting, structure analysis and antioxidant activity of a polysaccharide from Siraitia grosvenorii[D]. Tianjin: Tianjin University of Science & Technology, 2019.
    [2] SUZUKI Y A, TOMODA M, MURATA Y, et al. Antidiabetic effect of long-term supplementation with Siraitia grosvenorii on the spontaneously diabetic Goto-Kakizaki rat[J]. British Journal of Nutrition,2007,97(4):770−775. doi:  10.1017/S0007114507381300
    [3] QI X Y, CHEN W J, ZHANG L Q, et al. Mogrosides extract from Siraitia grosvenorii scavenges free radicals in vitro and lowers oxidative stress, serum glucose, and lipid levels in alloxan-induced diabetic mice[J]. Nutrition Research,2008,28(4):278−284. doi:  10.1016/j.nutres.2008.02.008
    [4] ZHOU G S, ZHANG Y L, LI Y, et al. The metabolism of a natural product mogroside V, in healthy and type 2 diabetic rats[J]. Journal of Chromatography B,2018,1079:25−33. doi:  10.1016/j.jchromb.2018.02.002
    [5] WANG S Y, CUI K X, LIU J H, et al. Mogroside-rich extract from Siraitia grosvenorii fruits ameliorates high-fat diet-induced obesity associated with the modulation of gut microbiota in mice[J]. Frontiers in Nutrition,2022,9:870394. doi:  10.3389/fnut.2022.870394
    [6] DU Y, LIU J H, LIU S Y, et al. Mogroside-rich extract from Siraitia grosvenorii fruits protects against the depletion of ovarian reserves in aging mice by ameliorating inflammatory stress[J]. Food Function,2022,13(1):121−130. doi:  10.1039/D1FO03194E
    [7] SUZUKI-KEMURIYAMA N, ABE A, NAKANE S, et al. Extract of Siraitia grosvenorii (Luo Han Guo) protects against hepatic fibrosis in mice on a choline-deficient, methionine-lowered, L-amino acid-defined, high-fat diet without trans fatty acids[J]. Fundamental Toxicological Sciences,2021,8(5):135−145. doi:  10.2131/fts.8.135
    [8] SHI L. Bioactivities, isolation and purification methods of polysaccharides from natural products: A review[J]. International Journal of Biological Macromolecules,2016,92:37−48. doi:  10.1016/j.ijbiomac.2016.06.100
    [9] AHMAD M M. Recent trends in chemical modification and antioxidant activities of plants-based polysaccharides: A review[J]. Carbohydrate Polymer Technologies and Applications,2021,2:100045. doi:  10.1016/j.carpta.2021.100045
    [10] WANG Y F, HOU G H, LI J L, et al. Structure characterization, modification through carboxymethylation and sulfation, and in vitro antioxidant and hypoglycemic activities of a polysaccharide from Lachnum sp[J]. Process Biochemistry,2018,72:177−187. doi:  10.1016/j.procbio.2018.06.002
    [11] 别蒙, 谢笔钧, 孙智达. 不同取代度水溶性羧甲基茯苓多糖的制备、结构表征及体外抑菌活性[J]. 食品科学,2020,41(12):67−76. [BIE M, XIE B J, SUN Z D. Preparation, structural characterization and in vitro antibacterial activity of water-soluble carboxymethyl pachymaran with different degrees of substitution[J]. Food Science,2020,41(12):67−76. doi:  10.7506/spkx1002-6630-20190603-015

    BIE M, XIE B J, SUN Z D. Preparation, structural characterization and in vitro antibacterial activity of water-soluble carboxymethyl pachymaran with different degrees of substitution[J]. Food Science, 2020, 41(12): 67-76. doi:  10.7506/spkx1002-6630-20190603-015
    [12] ZHU Y M, PAN L C, ZHANG L J, et al. Chemical structure and antioxidant activity of a polysaccharide from Siraitia grosvenorii[J]. International Journal of Biological Macromolecules,2020,165(Pt B):1900−1910.
    [13] 白家峰, 姚延超, 郑毅, 等. 罗汉果多糖的羧甲基化修饰及抗氧化性能影响研究[J]. 湖北农业科学,2021,60(15):107−111. [BAI J F, YAO Y C, ZHENG Y, et al. Study on the effect of carboxymethylation of Siraitia grosvenorii polysaccharide on its antioxidant[J]. Hubei Agricultural Sciences,2021,60(15):107−111. doi:  10.14088/j.cnki.issn0439-8114.2021.15.021

    BAI J F, YAO Y C, ZHENG Y, et al. Study on the effect of carboxymethylation of Siraitia grosvenorii polysaccharide on its antioxidant[J]. Hubei Agricultural Sciences, 2021, 60(15): 107-111. doi:  10.14088/j.cnki.issn0439-8114.2021.15.021
    [14] 崔丹丹. 罗汉果多糖提取分离、结构解析及对糖尿病肾病小鼠保护作用研究[D]. 西安: 陕西科技大学, 2021

    CUI D D. Study on extraction, isolation, structure analysis and protective effect of Siraitia grosvenorii polysaccharide on diabetic nephropathy in mice[D]. Xi’an: Shanxi University of Science and Technology, 2021.
    [15] XIE L M, HUANG Z B, QIN L, et al. Effects of sulfation and carboxymethylation on Cyclocarya paliurus polysaccharides: Physicochemical properties, antitumor activities and protection against cellular oxidative stress[J]. International Journal of Biological Macromolecules,2022,204:103−115. doi:  10.1016/j.ijbiomac.2022.01.192
    [16] 王玉蓉, 冯斌, 巨佳, 等. 羧甲基化白及多糖-壳聚糖载姜黄素聚电解质复合膜的制备及其表征[J]. 中草药,2020,51(4):978−985. [WANG Y R, FENG B, JU J, et al. Carboxymethyl Bletilla striata polysaccharide-chitosan@curcumin polyelectrolyte complex films: Preparation and characterization[J]. Chinese Traditional and Herbal Drugs,2020,51(4):978−985. doi:  10.7501/j.issn.0253-2670.2020.04.023

    WANG Y R, FENG B, JU J, et al. Carboxymethyl Bletilla striata polysaccharide-chitosan@curcumin polyelectrolyte complex films: Preparation and characterization[J]. Chinese Traditional and Herbal Drugs, 2020, 51(4): 978-985. doi:  10.7501/j.issn.0253-2670.2020.04.023
    [17] MASUKO T, MINAMI A, IWASAKI N, et al. Carbohydrate analysis by a phenol-sulfuric acid method in microplate format[J]. Analytical Biochemistry,2005,339(1):69−72. doi:  10.1016/j.ab.2004.12.001
    [18] 王文平, 郭祀远, 李琳, 等. 野木瓜多糖中糖醛酸含量测定[J]. 食品科技,2007(10):84−86. [WANG W P, GUO Q Y, LI L, et al. Determination of uronic acids in polysaccharides from Stanuntonia Chinensis[J]. Food Science and Technology,2007(10):84−86. doi:  10.3969/j.issn.1005-9989.2007.10.024

    WANG W P, GUO Q Y, LI L, et al. Determination of uronic acids in polysaccharides from Stanuntonia Chinensis[J]. Food Science and Technology, 2007(10): 84-86. doi:  10.3969/j.issn.1005-9989.2007.10.024
    [19] JIA Y N, XUE Z H, WANG Y J, et al. Chemical structure and inhibition on alpha-glucosidase of polysaccharides from corn silk by fractional precipitation[J]. Carbohydrate Polymers 2021, 252: 117185.
    [20] 栾迪. 莼菜体外胶多糖降血糖组分分离及其降血糖机理研究[D]. 杭州: 浙江工业大学, 2020.

    LUAN D. Isolation and hypoglycemic mechanism effect of polysacchaide from Brasenia schreberi[D]. Hangzhou: Zhejiang University of Technology, 2020
    [21] KAGIMURA F Y, DA CUNHA M A, THEIS T V, et al. Carboxymethylation of (1->6)-beta-glucan (lasiodiplodan): Preparation, characterization and antioxidant evaluation[J]. Carbohydrate Polymers,2015,127:390−399. doi:  10.1016/j.carbpol.2015.03.045
    [22] HUANG Z, ZONG M H, LOU W Y. Effect of acetylation modification on the emulsifying and antioxidant properties of polysaccharide from Millettia speciosa Champ[J]. Food Hydrocolloids,2022,124:107217. doi:  10.1016/j.foodhyd.2021.107217
    [23] WANG X M, ZHANG Z S, ZHAO M X. Carboxymethylation of polysaccharides from Tremella fuciformis for antioxidant and moisture-preserving activities[J]. International Journal of Biological Macromolecules,2015,72:526−530. doi:  10.1016/j.ijbiomac.2014.08.045
    [24] 李雪晖, 罗心雨, 王莹. 羧甲基化南瓜多糖的制备及抗氧化、降血糖活性研究[J]. 食品与机械,2022,38(3):178−183, 246. [LI X H, LUO X Y, WANG Y. Preparation of carboxymethylated pumpkin polysaccharide and its antioxidant and hypolycemic activities[J]. Food & Machinery,2022,38(3):178−183, 246. doi:  10.13652/j.spjx.1003.5788.2022.90007

    LI X H, LUO X Y, WANG Y. Preparation of carboxymethylated pumpkin polysaccharide and its antioxidant and hypolycemic activities[J]. FOOD&MACHINERY, 2022, 38(3): 178-83, 246. doi:  10.13652/j.spjx.1003.5788.2022.90007
    [25] ZOU G J, HUANG W B, SUN X Y, et al. Carboxymethylation of corn silk polysaccharide and its inhibition on adhesion of nanocalcium oxalate crystals to damaged renal epithelial cells[J]. ACS Biomaterials Science& Engineering,2021,7(7):3409−3422.
    [26] CAO Y Y, JI Y H, LIAO A M, et al. Effects of sulfated, phosphorylated and carboxymethylated modifications on the antioxidant activitiesin vitro of polysaccharides sequentially extracted from Amana edulis[J]. International Journal of Biological Macromolecules,2020,146:887−896. doi:  10.1016/j.ijbiomac.2019.09.211
    [27] WANG Y J, MO Q, LI Z N, et al. Effects of degree of carboxymethylation on physicochemical and biological properties of pachyman[J]. International Journal of Biological Macromolecules,2012,51(5):1052−1056. doi:  10.1016/j.ijbiomac.2012.08.022
    [28] LIU Y T, YOU Y X, LI Y W, et al. Characterization of carboxymethylated polysaccharides from Catathelasma ventricosum and their antioxidant and antibacterial activities[J]. Journal of Functional Foods,2017,38:355−362. doi:  10.1016/j.jff.2017.09.050
    [29] CHAKKA V P, ZHOU T. Carboxymethylation of polysaccharides: Synthesis and bioactivities[J]. International Journal of Biological Macromolecules, 2020, 165(Pt B): 2425−2431.
    [30] YUEN S N, CHOI S M, PHILLIPS D L, et al. Raman and FTIR spectroscopic study of carboxymethylated non-starch polysaccharides[J]. Food Chemistry,2009,114(3):1091−1098. doi:  10.1016/j.foodchem.2008.10.053
    [31] TU W S, ZHU J H, BI S X, et al. Isolation, characterization and bioactivities of a new polysaccharide from Annona squamosa and its sulfated derivative[J]. Carbohydrate Polymers,2016,152:287−296. doi:  10.1016/j.carbpol.2016.07.012
    [32] 焦中高. 红枣多糖的分子修饰与生物活性研究[D]. 杨凌: 西北农林科技大学, 2012

    JIAO Z G. Molwcular modification and biological activities of Ziziphus jujuba fruit polysaccharide[D]. Yangling: Northwest A & F University, 2012.
    [33] 艾于杰. 抗氧化活性茶多糖构效关系研究[D]. 武汉: 华中农业大学, 2019

    AI Y J. Study on the structure-activity relationship of antioxidant tea polysaccharides[D]. Wuhan: Huazhong Agricultural University, 2019.
    [34] FENG S M, LUAN D, NING K, et al. Ultrafiltration isolation, hypoglycemic activity analysis and structural characterization of polysaccharides from Brasenia schreberi[J]. International Journal of Biological Macromolecules,2019,135:141−151. doi:  10.1016/j.ijbiomac.2019.05.129
    [35] 贾红倩, 刘嵬, 颜军, 等. 杏鲍菇多糖的分离纯化、乙酰化修饰及其抗氧化活性[J]. 新宝登录入口(中国)有限公司,2018,39(3):39−44. [JIA H Q, LIU W, YAN J, et al. Isolation and purification, acetylation modification and antioxidant activity of polysaccharides of Pleurotus eryngii Quel[J]. Science and Technology of Food Industry,2018,39(3):39−44. doi:  10.13386/j.issn1002-0306.2018.03.008

    JIA H J, LIU W, YAN J, et al. Isolation and purification, acetylation modification and antioxidant activity of polysaccharides of Pleurotus eryngii Quel[J]. Science and Technology of Food Industry, 2018, 39(3): 39-44. doi:  10.13386/j.issn1002-0306.2018.03.008
    [36] 杨玉洁, 刘静宜, 谭艳, 等. 多糖降血糖活性构效关系及作用机制研究进展[J]. 食品科学,2021,42(23):355−363. [YANG Y J, LIU J Y, TAN Y, et al. Research progress on the structure-activity relationship and hypoglycemic mechanism of polysaccharide[J]. Food Science,2021,42(23):355−363. doi:  10.7506/spkx1002-6630-20200818-244

    YANG Y J, LIU J Y, TAN J, et al. Research progress on the structure-activity relationship and hypoglycemic mechanism of polysaccharide[J]. Food Science, 2021, 42(23): 355-363. doi:  10.7506/spkx1002-6630-20200818-244
    [37] 曹莉莉, 李亮, 王芳, 等. 羧甲基化修饰余甘多糖及生物活性研究[J]. 中国食品学报,2017,17(10):57−63. [CAO L L, LI L, WANG F, et al. Antioxidant and antineoplastic activities of carboxymethyled polysaccharide from fruits of Phyllanthus emblic L

    J]. Journal of Chinese Institute of Food Science and Technology,2017,17(10):57−63.
    [38] AN Y Z, LIU H T, LI X X, et al. Carboxymethylation modification, characterization, antioxidant activity and anti-UVC ability of Sargassum fusiforme polysaccharide[J]. Carbohydrate Research,2022,515:108555. doi:  10.1016/j.carres.2022.108555
    [39] 周瑞, 田呈瑞, 张静, 等. 鸡腿菇多糖羧甲基修饰及其抗氧化性研究[J]. 食品科学,2010,31(13):10−15. [ZHOU R, TIAN C R, ZHANG J, et al. Carboxymethylation and antioxidant activity of Coprinus comatus polysaccharide[J]. Food Science,2010,31(13):10−15.

    ZHOU R, TIAN C R, ZHANG J, et al. Carboxymethylation and antioxidant activity of Coprinus comatus polysaccharide[J]. Food Science, 2010, 31(13): 10-15.
  • 加载中
图(9) / 表(1)
计量
  • 文章访问数:  20
  • HTML全文浏览量:  19
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-09-19
  • 网络出版日期:  2023-05-22
  • 刊出日期:  2023-07-01

目录

    /

    返回文章
    返回