Preparation and Physiological Activity of Carboxymethylated Siraitia grosvenorii Polysaccharide with Different Degrees of Substitution
-
摘要: 为探讨不同羧甲基化取代度对罗汉果多糖(Siraitia grosvenorii polysaccharide,SGP)生理活性的影响,以SGP为原料,采用溶媒法制备羧甲基化罗汉果多糖(carboxymethylated Siraitia grosvenorii polysaccharide,CSGP)。分析氯乙酸浓度、反应时间、氢氧化钠浓度对取代度的影响,制备得到取代度为0.28~1.09的CSGP。对不同取代度的CSGP进行理化性质表征,并采用体外生理活性实验探讨不同取代度对降血糖活性和抗氧化活性的影响。结果表明:高效凝胶渗透色谱结果显示经过修饰的CSGP分子质量小于SGP;红外图谱在1317 cm−1处出现新的吸收峰,表明羧甲基成功引入多糖中;扫描电镜结果表明随着取代度的增加,CSGP微观表面形态变得更加破碎并出现卷曲化现象;刚果红实验显示高取代度的CSGP-H三股螺旋结构消失。体外生理活性实验表明:在质量浓度为6 mg/mL时具有中等取代度的CSGP-M对α-淀粉酶的抑制率、DPPH自由基、羟基自由基的清除率最高分别达到44.36%±1.30%、63.17%±2.07%、70.21%±1.89%,相较于SGP、CSGP-L、CSGP-H具有更好的降血糖活性和体外抗氧化活性。随着取代度的增加,CSGP-H对α-淀粉酶的抑制率、DPPH自由基、羟基自由基的清除率分别降到11.65%±0.26%、47.45%±0.79%、34.85%±0.78%。论文研究结果表明具有中等取代度的CSGP才可以发挥最佳的生理活性。Abstract: To investigate the effect of carboxymethylated with different degrees of substitution on the properties of Siraitia grosvenorii polysaccharide (SGP), carboxymethylated Siraitia grosvenorii polysaccharide (CSGP) was prepared by solvent method by using the raw material of SGP. The effects of chloroacetic acid concentration, reaction time, and sodium hydroxide concentration on the degree of substitution were analyzed, and the CSGP with the degree of substitution ranging from 0.28 to 1.09 was prepared. The physicochemical properties of CSGP with different substitution degrees were characterized, and the effects of substitution degrees on hypoglycemic activity and antioxidant activity were investigated by in vitro physiological activity experiments. The high-performance gel permeation chromatography revealed that the molecular mass of CSGP was smaller than that of SGP. The results of FTIR manifested a new absorption peak at 1317 cm−1, indicating that carboxymethyl was successfully introduced into the polysaccharide. The results of scanning electron microscopy showed that with the increase of substitution degree, the surface morphology of CSGP became more fragmented and appeared to curl. Congo red experiment revealed that the triple helix structure of CSGP with high substitution degree disappeared. In vitro physiological activity experiment showed that 6 mg/mL of the CSGP-M had the highest α-amylase inhibition, DPPH, and hydroxyl radical scavenging rates of 44.36%±1.30%, 63.17%±2.07%, and 70.21%±1.89%, respectively. Compared with SGP, CSGP-L and CSGP-H, CSGP-M with medium degree of substitution has the best hypoglycemic activity and antioxidant activity in vitro. When the degree of substitution was increased to 1.09, the inhibition rate of α-amylase, DPPH and hydroxyl radical scavenging rate of CSGP-H decreased to 11.65%±0.26%, 47.45%±0.79%, and 34.85%±0.78%, respectively. The results indicated that CSGP with medium degree of substitution could exert the best physiological activity.
-
表 1 SGP羧甲基化修饰前后理化性质分析
Table 1. Analysis of physicochemical properties before and after SGP carboxymethylated modification
样品 总糖含量(%) 糖醛酸含量(%) 取代度 分子量(kDa) SGP 47.60±1.83a 21.94±0.48a − 3.44×103a CSGP-L 38.96±0.56b 19.75±0.32b 0.28±0.09c 2.50×103d CSGP-M 31.21±1.60d 22.60±0.64a 0.66±0.04b 2.53×103c CSGP-H 36.35±0.87c 12.15±0.90c 1.09±0.04a 2.77×103b 注:同列不同字母表示差异显著(P<0.05)。 -
[1] 张立娟. 罗汉果多糖的提取、结构分析及抗氧化活性研究[D]. 天津: 天津科技大学, 2019.ZHANG L J. Extracting, structure analysis and antioxidant activity of a polysaccharide from Siraitia grosvenorii[D]. Tianjin: Tianjin University of Science & Technology, 2019. [2] SUZUKI Y A, TOMODA M, MURATA Y, et al. Antidiabetic effect of long-term supplementation with Siraitia grosvenorii on the spontaneously diabetic Goto-Kakizaki rat[J]. British Journal of Nutrition,2007,97(4):770−775. doi: 10.1017/S0007114507381300 [3] QI X Y, CHEN W J, ZHANG L Q, et al. Mogrosides extract from Siraitia grosvenorii scavenges free radicals in vitro and lowers oxidative stress, serum glucose, and lipid levels in alloxan-induced diabetic mice[J]. Nutrition Research,2008,28(4):278−284. doi: 10.1016/j.nutres.2008.02.008 [4] ZHOU G S, ZHANG Y L, LI Y, et al. The metabolism of a natural product mogroside V, in healthy and type 2 diabetic rats[J]. Journal of Chromatography B,2018,1079:25−33. doi: 10.1016/j.jchromb.2018.02.002 [5] WANG S Y, CUI K X, LIU J H, et al. Mogroside-rich extract from Siraitia grosvenorii fruits ameliorates high-fat diet-induced obesity associated with the modulation of gut microbiota in mice[J]. Frontiers in Nutrition,2022,9:870394. doi: 10.3389/fnut.2022.870394 [6] DU Y, LIU J H, LIU S Y, et al. Mogroside-rich extract from Siraitia grosvenorii fruits protects against the depletion of ovarian reserves in aging mice by ameliorating inflammatory stress[J]. Food Function,2022,13(1):121−130. doi: 10.1039/D1FO03194E [7] SUZUKI-KEMURIYAMA N, ABE A, NAKANE S, et al. Extract of Siraitia grosvenorii (Luo Han Guo) protects against hepatic fibrosis in mice on a choline-deficient, methionine-lowered, L-amino acid-defined, high-fat diet without trans fatty acids[J]. Fundamental Toxicological Sciences,2021,8(5):135−145. doi: 10.2131/fts.8.135 [8] SHI L. Bioactivities, isolation and purification methods of polysaccharides from natural products: A review[J]. International Journal of Biological Macromolecules,2016,92:37−48. doi: 10.1016/j.ijbiomac.2016.06.100 [9] AHMAD M M. Recent trends in chemical modification and antioxidant activities of plants-based polysaccharides: A review[J]. Carbohydrate Polymer Technologies and Applications,2021,2:100045. doi: 10.1016/j.carpta.2021.100045 [10] WANG Y F, HOU G H, LI J L, et al. Structure characterization, modification through carboxymethylation and sulfation, and in vitro antioxidant and hypoglycemic activities of a polysaccharide from Lachnum sp[J]. Process Biochemistry,2018,72:177−187. doi: 10.1016/j.procbio.2018.06.002 [11] 别蒙, 谢笔钧, 孙智达. 不同取代度水溶性羧甲基茯苓多糖的制备、结构表征及体外抑菌活性[J]. 食品科学,2020,41(12):67−76. [BIE M, XIE B J, SUN Z D. Preparation, structural characterization and in vitro antibacterial activity of water-soluble carboxymethyl pachymaran with different degrees of substitution[J]. Food Science,2020,41(12):67−76. doi: 10.7506/spkx1002-6630-20190603-015BIE M, XIE B J, SUN Z D. Preparation, structural characterization and in vitro antibacterial activity of water-soluble carboxymethyl pachymaran with different degrees of substitution[J]. Food Science, 2020, 41(12): 67-76. doi: 10.7506/spkx1002-6630-20190603-015 [12] ZHU Y M, PAN L C, ZHANG L J, et al. Chemical structure and antioxidant activity of a polysaccharide from Siraitia grosvenorii[J]. International Journal of Biological Macromolecules,2020,165(Pt B):1900−1910. [13] 白家峰, 姚延超, 郑毅, 等. 罗汉果多糖的羧甲基化修饰及抗氧化性能影响研究[J]. 湖北农业科学,2021,60(15):107−111. [BAI J F, YAO Y C, ZHENG Y, et al. Study on the effect of carboxymethylation of Siraitia grosvenorii polysaccharide on its antioxidant[J]. Hubei Agricultural Sciences,2021,60(15):107−111. doi: 10.14088/j.cnki.issn0439-8114.2021.15.021BAI J F, YAO Y C, ZHENG Y, et al. Study on the effect of carboxymethylation of Siraitia grosvenorii polysaccharide on its antioxidant[J]. Hubei Agricultural Sciences, 2021, 60(15): 107-111. doi: 10.14088/j.cnki.issn0439-8114.2021.15.021 [14] 崔丹丹. 罗汉果多糖提取分离、结构解析及对糖尿病肾病小鼠保护作用研究[D]. 西安: 陕西科技大学, 2021CUI D D. Study on extraction, isolation, structure analysis and protective effect of Siraitia grosvenorii polysaccharide on diabetic nephropathy in mice[D]. Xi’an: Shanxi University of Science and Technology, 2021. [15] XIE L M, HUANG Z B, QIN L, et al. Effects of sulfation and carboxymethylation on Cyclocarya paliurus polysaccharides: Physicochemical properties, antitumor activities and protection against cellular oxidative stress[J]. International Journal of Biological Macromolecules,2022,204:103−115. doi: 10.1016/j.ijbiomac.2022.01.192 [16] 王玉蓉, 冯斌, 巨佳, 等. 羧甲基化白及多糖-壳聚糖载姜黄素聚电解质复合膜的制备及其表征[J]. 中草药,2020,51(4):978−985. [WANG Y R, FENG B, JU J, et al. Carboxymethyl Bletilla striata polysaccharide-chitosan@curcumin polyelectrolyte complex films: Preparation and characterization[J]. Chinese Traditional and Herbal Drugs,2020,51(4):978−985. doi: 10.7501/j.issn.0253-2670.2020.04.023WANG Y R, FENG B, JU J, et al. Carboxymethyl Bletilla striata polysaccharide-chitosan@curcumin polyelectrolyte complex films: Preparation and characterization[J]. Chinese Traditional and Herbal Drugs, 2020, 51(4): 978-985. doi: 10.7501/j.issn.0253-2670.2020.04.023 [17] MASUKO T, MINAMI A, IWASAKI N, et al. Carbohydrate analysis by a phenol-sulfuric acid method in microplate format[J]. Analytical Biochemistry,2005,339(1):69−72. doi: 10.1016/j.ab.2004.12.001 [18] 王文平, 郭祀远, 李琳, 等. 野木瓜多糖中糖醛酸含量测定[J]. 食品科技,2007(10):84−86. [WANG W P, GUO Q Y, LI L, et al. Determination of uronic acids in polysaccharides from Stanuntonia Chinensis[J]. Food Science and Technology,2007(10):84−86. doi: 10.3969/j.issn.1005-9989.2007.10.024WANG W P, GUO Q Y, LI L, et al. Determination of uronic acids in polysaccharides from Stanuntonia Chinensis[J]. Food Science and Technology, 2007(10): 84-86. doi: 10.3969/j.issn.1005-9989.2007.10.024 [19] JIA Y N, XUE Z H, WANG Y J, et al. Chemical structure and inhibition on alpha-glucosidase of polysaccharides from corn silk by fractional precipitation[J]. Carbohydrate Polymers 2021, 252: 117185. [20] 栾迪. 莼菜体外胶多糖降血糖组分分离及其降血糖机理研究[D]. 杭州: 浙江工业大学, 2020.LUAN D. Isolation and hypoglycemic mechanism effect of polysacchaide from Brasenia schreberi[D]. Hangzhou: Zhejiang University of Technology, 2020 [21] KAGIMURA F Y, DA CUNHA M A, THEIS T V, et al. Carboxymethylation of (1->6)-beta-glucan (lasiodiplodan): Preparation, characterization and antioxidant evaluation[J]. Carbohydrate Polymers,2015,127:390−399. doi: 10.1016/j.carbpol.2015.03.045 [22] HUANG Z, ZONG M H, LOU W Y. Effect of acetylation modification on the emulsifying and antioxidant properties of polysaccharide from Millettia speciosa Champ[J]. Food Hydrocolloids,2022,124:107217. doi: 10.1016/j.foodhyd.2021.107217 [23] WANG X M, ZHANG Z S, ZHAO M X. Carboxymethylation of polysaccharides from Tremella fuciformis for antioxidant and moisture-preserving activities[J]. International Journal of Biological Macromolecules,2015,72:526−530. doi: 10.1016/j.ijbiomac.2014.08.045 [24] 李雪晖, 罗心雨, 王莹. 羧甲基化南瓜多糖的制备及抗氧化、降血糖活性研究[J]. 食品与机械,2022,38(3):178−183, 246. [LI X H, LUO X Y, WANG Y. Preparation of carboxymethylated pumpkin polysaccharide and its antioxidant and hypolycemic activities[J]. Food & Machinery,2022,38(3):178−183, 246. doi: 10.13652/j.spjx.1003.5788.2022.90007LI X H, LUO X Y, WANG Y. Preparation of carboxymethylated pumpkin polysaccharide and its antioxidant and hypolycemic activities[J]. FOOD&MACHINERY, 2022, 38(3): 178-83, 246. doi: 10.13652/j.spjx.1003.5788.2022.90007 [25] ZOU G J, HUANG W B, SUN X Y, et al. Carboxymethylation of corn silk polysaccharide and its inhibition on adhesion of nanocalcium oxalate crystals to damaged renal epithelial cells[J]. ACS Biomaterials Science& Engineering,2021,7(7):3409−3422. [26] CAO Y Y, JI Y H, LIAO A M, et al. Effects of sulfated, phosphorylated and carboxymethylated modifications on the antioxidant activitiesin vitro of polysaccharides sequentially extracted from Amana edulis[J]. International Journal of Biological Macromolecules,2020,146:887−896. doi: 10.1016/j.ijbiomac.2019.09.211 [27] WANG Y J, MO Q, LI Z N, et al. Effects of degree of carboxymethylation on physicochemical and biological properties of pachyman[J]. International Journal of Biological Macromolecules,2012,51(5):1052−1056. doi: 10.1016/j.ijbiomac.2012.08.022 [28] LIU Y T, YOU Y X, LI Y W, et al. Characterization of carboxymethylated polysaccharides from Catathelasma ventricosum and their antioxidant and antibacterial activities[J]. Journal of Functional Foods,2017,38:355−362. doi: 10.1016/j.jff.2017.09.050 [29] CHAKKA V P, ZHOU T. Carboxymethylation of polysaccharides: Synthesis and bioactivities[J]. International Journal of Biological Macromolecules, 2020, 165(Pt B): 2425−2431. [30] YUEN S N, CHOI S M, PHILLIPS D L, et al. Raman and FTIR spectroscopic study of carboxymethylated non-starch polysaccharides[J]. Food Chemistry,2009,114(3):1091−1098. doi: 10.1016/j.foodchem.2008.10.053 [31] TU W S, ZHU J H, BI S X, et al. Isolation, characterization and bioactivities of a new polysaccharide from Annona squamosa and its sulfated derivative[J]. Carbohydrate Polymers,2016,152:287−296. doi: 10.1016/j.carbpol.2016.07.012 [32] 焦中高. 红枣多糖的分子修饰与生物活性研究[D]. 杨凌: 西北农林科技大学, 2012JIAO Z G. Molwcular modification and biological activities of Ziziphus jujuba fruit polysaccharide[D]. Yangling: Northwest A & F University, 2012. [33] 艾于杰. 抗氧化活性茶多糖构效关系研究[D]. 武汉: 华中农业大学, 2019AI Y J. Study on the structure-activity relationship of antioxidant tea polysaccharides[D]. Wuhan: Huazhong Agricultural University, 2019. [34] FENG S M, LUAN D, NING K, et al. Ultrafiltration isolation, hypoglycemic activity analysis and structural characterization of polysaccharides from Brasenia schreberi[J]. International Journal of Biological Macromolecules,2019,135:141−151. doi: 10.1016/j.ijbiomac.2019.05.129 [35] 贾红倩, 刘嵬, 颜军, 等. 杏鲍菇多糖的分离纯化、乙酰化修饰及其抗氧化活性[J]. 新宝登录入口(中国)有限公司,2018,39(3):39−44. [JIA H Q, LIU W, YAN J, et al. Isolation and purification, acetylation modification and antioxidant activity of polysaccharides of Pleurotus eryngii Quel[J]. Science and Technology of Food Industry,2018,39(3):39−44. doi: 10.13386/j.issn1002-0306.2018.03.008JIA H J, LIU W, YAN J, et al. Isolation and purification, acetylation modification and antioxidant activity of polysaccharides of Pleurotus eryngii Quel[J]. Science and Technology of Food Industry, 2018, 39(3): 39-44. doi: 10.13386/j.issn1002-0306.2018.03.008 [36] 杨玉洁, 刘静宜, 谭艳, 等. 多糖降血糖活性构效关系及作用机制研究进展[J]. 食品科学,2021,42(23):355−363. [YANG Y J, LIU J Y, TAN Y, et al. Research progress on the structure-activity relationship and hypoglycemic mechanism of polysaccharide[J]. Food Science,2021,42(23):355−363. doi: 10.7506/spkx1002-6630-20200818-244YANG Y J, LIU J Y, TAN J, et al. Research progress on the structure-activity relationship and hypoglycemic mechanism of polysaccharide[J]. Food Science, 2021, 42(23): 355-363. doi: 10.7506/spkx1002-6630-20200818-244 [37] 曹莉莉, 李亮, 王芳, 等. 羧甲基化修饰余甘多糖及生物活性研究[J]. 中国食品学报,2017,17(10):57−63. [CAO L L, LI L, WANG F, et al. Antioxidant and antineoplastic activities of carboxymethyled polysaccharide from fruits of Phyllanthus emblic LJ]. Journal of Chinese Institute of Food Science and Technology,2017,17(10):57−63. [38] AN Y Z, LIU H T, LI X X, et al. Carboxymethylation modification, characterization, antioxidant activity and anti-UVC ability of Sargassum fusiforme polysaccharide[J]. Carbohydrate Research,2022,515:108555. doi: 10.1016/j.carres.2022.108555 [39] 周瑞, 田呈瑞, 张静, 等. 鸡腿菇多糖羧甲基修饰及其抗氧化性研究[J]. 食品科学,2010,31(13):10−15. [ZHOU R, TIAN C R, ZHANG J, et al. Carboxymethylation and antioxidant activity of Coprinus comatus polysaccharide[J]. Food Science,2010,31(13):10−15.ZHOU R, TIAN C R, ZHANG J, et al. Carboxymethylation and antioxidant activity of Coprinus comatus polysaccharide[J]. Food Science, 2010, 31(13): 10-15. -