• 食品科学与工程领域高质量科技期刊分级目录第一方阵T1
  • Scopus
  • FSTA
  • 北大核心期刊
  • 中国核心学术期刊RCCSE
  • DOAJ
  • JST China
  • 中国精品科技期刊
  • 中国农业核心期刊
  • CA
  • WJCI
  • 中国科技核心期刊CSTPCD
  • 中国生物医学SinoMed
中国精品科技期刊2020 食品青年科学家峰会

竹笋膳食纤维中结合多酚的提取工艺优化及抗氧化活性分析

冉莎 张甫生 李彬 杨金来 吴良如 郑炯

冉莎,张甫生,李彬,等. 竹笋膳食纤维中结合多酚的提取工艺优化及抗氧化活性分析[J]. 新宝登录入口(中国)有限公司,2023,44(13):233−241. doi:  10.13386/j.issn1002-0306.2022090198
引用本文: 冉莎,张甫生,李彬,等. 竹笋膳食纤维中结合多酚的提取工艺优化及抗氧化活性分析[J]. 新宝登录入口(中国)有限公司,2023,44(13):233−241. doi:  10.13386/j.issn1002-0306.2022090198
RAN Sha, ZHANG Fusheng, LI Bin, et al. Extraction Optimization and Antioxidant Activity of Bound Polyphenols in Bamboo Shoot Dietary Fiber[J]. Science and Technology of Food Industry, 2023, 44(13): 233−241. (in Chinese with English abstract). doi:  10.13386/j.issn1002-0306.2022090198
Citation: RAN Sha, ZHANG Fusheng, LI Bin, et al. Extraction Optimization and Antioxidant Activity of Bound Polyphenols in Bamboo Shoot Dietary Fiber[J]. Science and Technology of Food Industry, 2023, 44(13): 233−241. (in Chinese with English abstract). doi:  10.13386/j.issn1002-0306.2022090198

竹笋膳食纤维中结合多酚的提取工艺优化及抗氧化活性分析

doi: 10.13386/j.issn1002-0306.2022090198
基金项目: 重庆市科技兴林项目(2021-8;ZD2022-4);贵州省特色林业产业研发项目(2020-28);西南大学大学生创新创业训练计划项目(X202210635073)
详细信息
    作者简介:

    冉莎(2001−),女,本科,研究方向:果蔬加工,E-mail:2030413908@qq.com

    通讯作者:

    吴良如(1965−),男,本科,研究员,研究方向:竹笋加工,E-mail:bamshoots@163.com

    郑炯(1982−),男,博士,副教授,研究方向:果蔬加工,E-mail:zhengjiong_swu@126.com

  • 中图分类号: TS255.36

Extraction Optimization and Antioxidant Activity of Bound Polyphenols in Bamboo Shoot Dietary Fiber

  • 摘要: 为探究竹笋膳食纤维(bamboo shoots dietary fiber, BSDF)中结合多酚最佳提取工艺、多酚组成及其抗氧化活性,本研究以BSDF为原料,分别对提取时间、提取温度、碱液浓度和液料比4个因素进行单因素实验,在单因素实验基础上,结合Box-Behnken响应面试验优化BSDF中结合多酚的提取工艺,并对所提取的结合多酚组分进行了初步鉴定,同时以ABTS阳离子自由基、DPPH自由基、超氧阴离子自由基和羟基自由基清除率为指标考察其抗氧化活性。结果表明,BSDF中结合多酚最佳提取条件为碱液浓度9 mol/L、提取温度40 ℃、提取时间4 h、液料比20:1 mL/g,此条件下BSDF中结合多酚提取量预测值为27.95 mg GAE/g BSDF,实际提取量为26.68±0.73 mg GAE/g BSDF,预测准确率95.46%;采用超高效液相色谱-三重四级杆质谱联用仪从多酚提取液中初步鉴定出芥子酸、没食子酸、阿魏酸、香豆酸等12种多酚组分;所得多酚自由基清除率随质量浓度增加呈先升高后逐渐平稳的趋势,在质量浓度为3.0 mg/mL时对ABTS阳离子自由基、超氧阴离子自由基和羟基自由基清除率分别达到73.24%、59.92%和51.41%,浓度为1.25 mg/mL时对DPPH自由基清除率达到76.79%,各组清除率小于同质量浓度抗坏血酸溶液。研究结果可为BSDF中多酚类物质的开发利用提供理论参考。
  • 图  1  各因素对BSDF中结合多酚提取量的影响

    Figure  1.  Effects of various factors on the extraction amount of bound polyphenols from BSDF

    注:不同小写字母表示各处理间差异显著(P<0.05)。

    图  2  BSDF中结合多酚提取变量及其相互作用的响应面图

    Figure  2.  Response surface plot of variables extracted with polyphenols and their interactions in BSDF

    图  3  BSDF中结合多酚提取液质谱图

    Figure  3.  Mass spectrometry of bound polyphenol extract in BSDF

    图  4  BSDF中结合多酚提取液体外抗氧化活性

    Figure  4.  The antioxidant activity of polyphenols extracted from BSDF in vitro

    表  1  提取BSDF中结合多酚的响应面试验设计因素与水平

    Table  1.   Response surface test design factors and levels for extraction of bound polyphenols from BSDF

    水平A 提取时间(h)B 提取温度
    (°C)
    C 碱液浓度
    (mol/L)
    D 液料比
    (mL/g)
    −1335815:1
    0440920:1
    15451025:1
    下载: 导出CSV

    表  2  提取BSDF中结合多酚的响应面结果

    Table  2.   Results of extraction of bound polyphenol response surface from BSDF

    试验号ABCD多酚提取量(mg GAE/g BSDF)
    1110023.61±0.89
    2001121.58±1.37
    301−1019.03±0.77
    40−11019.87±0.91
    500−1−117.14±0.39
    6000027.19±0.32
    7100124.02±0.27
    8−10−1019.07±1.03
    90−10−118.73±0.88
    10011023.07±0.97
    11000027.32±0.83
    1210−1019.93±0.58
    130−1−1019.88±0.29
    14000026.89±0.71
    15010−120.12±1.07
    16−100119.08±0.77
    17101020.18±1.37
    18−1−10018.36±0.97
    19000028.02±0.81
    201−10020.93±0.76
    210−10123.98±0.33
    22100−118.82±0.45
    2300−1121.76±0.98
    24−100−117.32±0.79
    25−101019.82±0.63
    26000027.83±0.81
    27010124.76±0.89
    28001−118.36±0.91
    29−110020.76±0.68
    下载: 导出CSV

    表  3  二次响应面模型的方差分析

    Table  3.   ANOVA for the quadratic response surface model

    来源平方和自由度均方FP显著性
    模型300.771421.4828.10<0.0001**
    A14.26114.2618.650.0007**
    B7.6817.6810.040.0068**
    C3.0713.074.020.0648
    D50.80150.8066.44<0.0001**
    AB0.019610.01960.02560.8751
    AC0.062510.06250.08170.7791
    AD2.9612.963.870.0693
    BC4.1014.105.360.0362*
    BD0.093010.09300.12170.7324
    CD0.490010.49000.64080.4368
    A299.25199.25129.80<0.0001**
    B240.92140.9253.52<0.0001**
    C2113.761113.76148.78<0.0001**
    D276.78176.78100.41<0.0001**
    残差10.70140.7646
    失拟项9.84100.98374.540.0791
    误差项0.867440.2168
    总和311.4728
    注:*显著性差异(P<0.05);**极显著性差异(P<0.01)。
    下载: 导出CSV

    表  4  最佳条件下提取BSDF中结合多酚的预测值和试验值

    Table  4.   The predicted and experimental values of binding polyphenols in BSDF extracted under optimal conditions

    提取时间(h)提取温度(°C)碱液浓度(mol/L)液料比(mL/g)多酚提取量(mg GAE/g BSDF)
    预测条件4.1740.839.0721.57:127.95
    实际条件440920:126.68±0.73
    下载: 导出CSV

    表  5  BSDF中结合多酚初步筛选目标物

    Table  5.   The preliminary screening of target compounds by binding polyphenols in BSDF

    编号离子碎片绝对强度相对强度化合物名称
    1111.25177073514.24邻苯二酚
    2123.36814035.48对羟基苯甲醛
    3137.215616815.292-羟基苯甲酸
    4140.25163240113.12香豆酸
    5147.248954147.93肉桂酸
    6155.2270313721.73原儿茶酸
    7167.36751895.43香草酸
    8179.3793757.77咖啡酸
    9183.2512437342100没食子酸
    10195.210681910.46阿魏酸
    11198.117217716.86没食子酸乙酯
    12224.25189777815.26芥子酸
    13228.47846316.31白藜芦醇
    14272.3670576.56柚皮素
    15286.25629066.16山柰酚
    16288.1222861317.92儿茶素
    17301.35660966.47槲皮素
    18305.27617386.12原儿茶素
    19308.2529891229.26花色苷
    20317.3764097.48杨梅素
    21335.3535275.24黄素1
    22355.35423642234.06绿原酸
    23446.4263813021.21黄芩苷
    24463.7597625.85异槲皮素
    25628.5206698416.62芦丁
    下载: 导出CSV
  • [1] NIRMALAC, BISHT M S, LAISHRAM M. Bioactive compounds in bamboo shoots: Health benefits and prospects for developing functional foods[J]. International Journal of Food Science & Technology,2014,49(6):1425−1431.
    [2] 赵泓舟, 杜木英, 吴良如, 等. 方竹笋膳食纤维作为益生元对乳酸菌生长的影响[J]. 食品与发酵工业,2022,48(6):174−180. [ZHAO H Z, DU M Y, WU L R, et al. Effects of dietary fiber of bamboo shoots as prebiotics on the growth of lactic acid bacteria[J]. Food and Fermentation Industries,2022,48(6):174−180.

    ZHAO H Z, DU M Y, WU L R, et al. Effects of dietary fiber of bamboo shoots as prebiotics on the growth of lactic acid bacteria[J]. Food and Fermentation Industries, 2022, 48(6): 174-180.
    [3] GILL S K, ROSSI M, BAJKA B, et al. Dietary fibre in gastrointestinal health and disease[J]. Nature Reviews. Gastroenterology & Hepatology,2020,18(2):101−116.
    [4] TANG C D, WU L R, ZHANG F S, et al. Comparison of different extraction methods on the physicochemical, structural properties, and in vitro hypoglycemic activity of bamboo shoot dietary fibers[J]. Food Chemistry,2022,386:132642. doi:  10.1016/j.foodchem.2022.132642
    [5] ZHENG J, WU J H, DAI Y Y, et al. Influence of bamboo shoot dietary fiber on the rheological and textural properties of milk pudding[J]. LWT,2017,84:364−369. doi:  10.1016/j.lwt.2017.05.051
    [6] 李可, 李燕, 刘俊雅, 等. 竹笋膳食纤维结合预乳化植物油对低脂猪肉糜乳化稳定性和流变学特性的影响[J]. 食品与发酵工业,2020,46(20):9−14. [LI K, LI Y, LIU J Y, et al. Effects of dietary fiber of bamboo shoot combined with pre-emulsified vegetable oil on emulsifying stability and rheological properties of pork mince[J]. Food and Fermentation Industries,2020,46(20):9−14. doi:  10.13995/j.cnki.11-1802/ts.024420

    LI K, LI Y, LIU J Y, et al. Effects of dietary fiber of bamboo shoot combined with pre-emulsified vegetable oil on emulsifying stability and rheological properties of pork mince[J]. Food and Fermentation Industries, 2020, 46(20): 9-14. doi:  10.13995/j.cnki.11-1802/ts.024420
    [7] FRAGA C G, CROFT K D, KENNEDY D O, et al. The effects of polyphenols and other bioactives on human health[J]. Food & Function,2019,10(2):514−528.
    [8] 周子艺, 夏晓霞, 冉欢, 等. 植物多酚通过RAGE/MAPK/NF-κB通路抑制AGEs诱导的炎症反应研究进展[J]. 食品科学,2022,43(1):306−312. [ZHOU Z Y, XIA X X, RAN H, et al. Research progress of plant polyphenols in inhibiting AGES-induced inflammation through RAGE/MAPK/NF-κB pathway[J]. Food Science,2022,43(1):306−312. doi:  10.7506/spkx1002-6630-20210428-400

    ZHOU Z Y, XIA X X, RAN H, et al. Research progress of plant polyphenols in inhibiting AGES-induced inflammation through RAGE/MAPK/NF-κB pathway[J]. Food Science, 2022, 43(1): 306-312. doi:  10.7506/spkx1002-6630-20210428-400
    [9] JOSHI S S, HOWELL A B, DSOUZA D H. Antiviral effects of blueberry proanthocyanidins against Aichi virus[J]. Food Microbiology,2019,82:202−208. doi:  10.1016/j.fm.2019.02.001
    [10] 陈慧, YOSHINORI Katakura, 扈洪波, 等. SIRT3多酚激活剂的筛选及其对UVB诱导HaCaT细胞衰老的修复作用[J]. 食品科学,2021,42(5):115−121. [CHEN H, YOSHINORI K, HU H B, et al. Screening of SIRT3 polyphenol activator and its repair effect on UVB-induced senescence of HaCaT cells[J]. Food Science,2021,42(5):115−121. doi:  10.7506/spkx1002-6630-20191230-357

    CHEN H, YOSHINORI Katakura, HU H B, et al. Screening of SIRT3 polyphenol activator and its repair effect on UVB-induced senescence of HaCaT cells[J]. Food science, 2021, 42(5): 115-121. doi:  10.7506/spkx1002-6630-20191230-357
    [11] IZLIA J, ARROYO-MAYA, JOSE C, et al. Characterization of flavonoid-protein interactions using fluorescence spectroscopy: Binding of pelargonidin to dairy proteins[J]. Food Chemistry,2016,213(15):431−439.
    [12] 刘甜甜, 吴晓娟, 吴伟. 多酚-膳食纤维相互作用及其影响多酚生物利用率研究进展[J]. 中国粮油学报,2022,37(7):1−12. [LIU T T, WU X J, WU W. Research progress on the interaction between polyphenol and dietary fiber and its effect on the bioavailability of polyphenols[J]. Chinese Journal of Cereals and Oils,2022,37(7):1−12.

    LIU T T, WU X J, WU W. Research progress on the interaction between polyphenol and dietary fiber and its effect on the bioavailability of polyphenols[J]. Chinese Journal of Cereals and Oils, 2022, 37(7): 1−12.
    [13] PHAN A D, NETZEL G, WANG D, et al. Binding of dietary polyphenols to cellulose: structural and nutritional aspects[J]. Food Chemistry,2015,171:388−396. doi:  10.1016/j.foodchem.2014.08.118
    [14] 张兴杰. 菠萝蜜膳食纤维中结合多酚的提取工艺优化及其消化酵解特性的研究[D]. 南昌: 南昌大学, 2021.

    ZHANG X J. Study on the extraction process optimization and digestion and digestion characteristics of polyphenols from dietary fiber of jackfruit[D]. Nanchang: Nanchang University, 2021.
    [15] 夏婷, 赵超亚, 杜鹏, 等. 食品中多酚类化合物种类、提取方法和检测技术研究进展[J]. 食品与发酵工业,2019,45(5):231−238. [XIA T, ZHAO C Y, DU P, et al. Research progress on the types, extraction methods and detection technology of polyphenolic compounds in food[J]. Food and Fermentation Industries,2019,45(5):231−238. doi:  10.13995/j.cnki.11-1802/ts.017498

    XIA T, ZHAO C Y, DU P, et al. Research progress on the types, extraction methods and detection technology of polyphenolic compounds in food[J]. Food and fermentation industries, 2019, 45(5): 231-238. doi:  10.13995/j.cnki.11-1802/ts.017498
    [16] 汪楠, 黄山, 张月, 等. 高温蒸煮协同纤维素酶改性竹笋膳食纤维[J]. 食品与发酵工业,2020,46(4):13−18. [WANG N, HUANG S, ZHANG Y, et al. Modification of bamboo shoot dietary fiber by high temperature cooking combined with cellulase[J]. Food and Fermentation Industries,2020,46(4):13−18. doi:  10.13995/j.cnki.11-1802/ts.022326

    WANG N, HUANG S, ZHANG Y, et al. Modification of bamboo shoot dietary fiber by high temperature cooking combined with cellulase[J]. Food and Fermentation Industries, 2020, 46(4): 13-18. doi:  10.13995/j.cnki.11-1802/ts.022326
    [17] 郑玉婷. 绿豆皮膳食纤维中结合多酚的提取优化和抗氧化活性及其对淀粉酶活性的影响[D]. 南昌: 南昌大学, 2021.

    ZHENG Y T. Extraction optimization and antioxidant activity of bound polyphenols from mung bean peel dietary fiber and its effect on amylase activity[D]. Nanchang: Nanchang University, 2021.
    [18] LIU S, JIA M, CHEN J, et al. Removal of bound polyphenols and its effect on antioxidant and prebiotics properties of carrot dietary fiber[J]. Food Hydrocolloids,2019,93:284−292. doi:  10.1016/j.foodhyd.2019.02.047
    [19] 蔡惠钿, 张逸. 无花果多糖分离纯化工艺及抗氧化性能研究[J]. 中国调味品,2021,46(1):1−4. [CAI H T, ZHANG Y. Study on separation and purification technology and antioxidant activity of FIG polysaccharide[J]. Chinese Condiments,2021,46(1):1−4. doi:  10.3969/j.issn.1000-9973.2021.01.001

    CAI H T, ZHANG Y. Study on separation and purification technology and antioxidant activity of FIG polysaccharide[J]. Chinese condiments, 2021, 46(1): 1-4. doi:  10.3969/j.issn.1000-9973.2021.01.001
    [20] 许建本, 苏秀芳, 莫耀芳. 超声波辅助法提取假苹婆树叶总黄酮及其清除羟自由基能力[J]. 新宝登录入口(中国)有限公司,2018,39(23):199−202. [XU J B, SU X F, MO Y F. Ultrasound-assisted extraction of total flavonoids from Sterculia lanceolata and scavenging capacity on hydroxyl free radical[J]. Science and Technology of Food Industry,2018,39(23):199−202. doi:  10.13386/j.issn1002-0306.2018.23.035

    XU J B, SU X F, MO Y F. Ultrasound-assisted extraction of total flavonoids from Sterculia lanceolata and scavenging capacity on hydroxyl free radical[J]. Science and Technology of Food Industry, 2018, 39(23): 199-202. doi:  10.13386/j.issn1002-0306.2018.23.035
    [21] DANIELLA P, ANNE S, FABIANO T, et al. Lab and pilot-scale ultrasound-assisted water extraction of polyphenols from apple pomace[J]. Journal of Food Engineering,2012,111:73−81. doi:  10.1016/j.jfoodeng.2012.01.026
    [22] WANG K L, LI M, WEN X, et al. Optimization of ultrasound-assisted extraction of okra (Abelmoschus esculentus L. Moench) polysaccharides based on response surface methodology and antioxidant activity[J]. International Journal of Biological Macromolecules,2018,114:1056−1063. doi:  10.1016/j.ijbiomac.2018.03.145
    [23] NAYAK A, BHUSHAN B, ROSALES A, et al. Valorisation potential of Cabernet grape pomace for the recovery of polyphenols: Process intensification, optimisation and study of kinetics[J]. Food and Bioproducts Processing,2018,109:74−85. doi:  10.1016/j.fbp.2018.03.004
    [24] SUN S, HUANG S, SHI Y, et al. Extraction, isolation, characterization and antimicrobial activities of non-extractable polyphenols from pomegranate peel[J]. Food Chemistry,2021,351:129232. doi:  10.1016/j.foodchem.2021.129232
    [25] WANG Z, WANG C, ZHANG C, et al. Ultrasound-assisted enzyme catalyzed hydrolysis of olive waste and recovery of antioxidant phenolic compounds[J]. Innovative Food Science & Emerging Technologies,2017,44:224−234.
    [26] 陈怡君, 王晓慧, 陈艳萍, 等. 响应面法优化超声波-微波协同辅助酸法提取猕猴桃皮果胶工艺及果胶理化性质分析[J]. 食品与发酵工业,2022,48(13):238−246. [CHEN Y J, WANG X H, CHEN Y P, et al. Optimization of Ultrasound-microwave-assisted acid extraction technology and Physicochemical properties of pectin from kiwifruit peel by response surface method[J]. Food and Fermentation Industries,2022,48(13):238−246. doi:  10.13995/j.cnki.11-1802/ts.029672

    CHEN Y J, WANG X H, CHEN Y P, et al. Optimization of Ultrasound-microwave-assisted acid extraction technology and Physicochemical properties of pectin from kiwifruit peel by response surface method[J]. Food and Fermentation Industries, 2022, 48(13): 238-246. doi:  10.13995/j.cnki.11-1802/ts.029672
    [27] 李安平, 谢碧霞, 钟秋平, 等. 毛竹春笋提取物抗氧化活性研究[J]. 食品科学,2008(5):97−100. [LI A P, XIE B X, ZHONG Q P, et al. Study on antioxidant activity of extracts from bamboo shoots[J]. Food Science,2008(5):97−100. doi:  10.3321/j.issn:1002-6630.2008.05.013

    LI A P, XIE B X, ZHONG Q P, et al. Study on antioxidant activity of extracts from bamboo shoots[J]. Food Science, 2008(5): 97-100. doi:  10.3321/j.issn:1002-6630.2008.05.013
    [28] 任旺, 叶秀娟, 李婷婷, 等. 麻竹笋中多酚类化合物的提取及挥发性成分分析[J]. 食品科学,2014,35(16):120−123. [REN W, YE X J, LI T T, et al. Extraction of polyphenolic compounds and analysis of volatile constituents from bamboo shoot[J]. Food Science,2014,35(16):120−123. doi:  10.7506/spkx1002-6630-201416023

    REN W, YE X J, et al. Extraction of polyphenolic compounds and analysis of volatile constituents from bamboo shoot[J]. Food science, 2014, 35(16): 120-123. doi:  10.7506/spkx1002-6630-201416023
    [29] 庄国栋, 汤丹, 陈永生. 结合态多酚改善肠道氧化应激与肠道屏障的研究进展[J]. 新宝登录入口(中国)有限公司,2022,43(11):440−448. [ZHUANG G D, TANG D, CHEN Y S. Research progress of conjugated polyphenols in improving intestinal oxidative stress and intestinal barrier[J]. Science and Technology of Food Industry,2022,43(11):440−448. doi:  10.13386/j.issn1002-0306.2021070114

    ZHUANG G D, TANG D, CHEN Y S. Research progress of conjugated polyphenols in improving intestinal oxidative stress and intestinal barrier[J]. Science and Technology of Food Industry, 2022, 43(11): 440-448. doi:  10.13386/j.issn1002-0306.2021070114
    [30] WANG Y L, CHEN J, WANG D M, et al. A systematic review on the composition, storage, processing of bamboo shoots: Focusing the nutritional and functional benefits[J]. Journal of Functional Foods,2020,71:104015. doi:  10.1016/j.jff.2020.104015
    [31] 石艳宾, 耿璐, 赵雅雯, 等. 龙葵果多酚物质响应面提取工艺优化及抗氧化分析[J]. 食品工业,2022,43(4):126−131. [SHI Y B, GENG L, ZHAO Y W, et al. Optimization of response surface extraction process and antioxidant analysis of polyphenols from Solanum nigrum fruit[J]. Food Industry,2022,43(4):126−131.

    SHI Y B, GENG L, ZHAO Y W, et al. Optimization of response surface extraction process and antioxidant analysis of polyphenols from Solanum nigrum fruit[J]. Food Industry, 2022, 43(4): 126-131.
    [32] 胡丽媛, 邱然. 麦汁及啤酒中的单体酚酸及它们对啤酒抗自由基活性的贡献[J]. 啤酒科技,2010(3):57−64. [HU L Y, QIU R. Monomeric phenolic acids in wort and beer and their contribution to anti-free radical activity in beer[J]. Beer Science and Technology,2010(3):57−64.

    HU L Y, QIU R. Monomeric phenolic acids in wort and beer and their contribution to anti-free radical activity in beer[J]. Beer Science and Technology, 2010(3): 57-64.
    [33] CONG Y X, ZHENG M M, HUANG F H, et al. Sinapic acid derivatives in microwave-pretreated rapeseeds and minor components in oils[J]. Journal of Food Composition and Analysis,2020,87:103394. doi:  10.1016/j.jfca.2019.103394
  • 加载中
图(4) / 表(5)
计量
  • 文章访问数:  28
  • HTML全文浏览量:  12
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-09-19
  • 网络出版日期:  2023-05-22
  • 刊出日期:  2023-07-01

目录

    /

    返回文章
    返回