Extraction Optimization and Antioxidant Activity of Bound Polyphenols in Bamboo Shoot Dietary Fiber
-
摘要: 为探究竹笋膳食纤维(bamboo shoots dietary fiber, BSDF)中结合多酚最佳提取工艺、多酚组成及其抗氧化活性,本研究以BSDF为原料,分别对提取时间、提取温度、碱液浓度和液料比4个因素进行单因素实验,在单因素实验基础上,结合Box-Behnken响应面试验优化BSDF中结合多酚的提取工艺,并对所提取的结合多酚组分进行了初步鉴定,同时以ABTS阳离子自由基、DPPH自由基、超氧阴离子自由基和羟基自由基清除率为指标考察其抗氧化活性。结果表明,BSDF中结合多酚最佳提取条件为碱液浓度9 mol/L、提取温度40 ℃、提取时间4 h、液料比20:1 mL/g,此条件下BSDF中结合多酚提取量预测值为27.95 mg GAE/g BSDF,实际提取量为26.68±0.73 mg GAE/g BSDF,预测准确率95.46%;采用超高效液相色谱-三重四级杆质谱联用仪从多酚提取液中初步鉴定出芥子酸、没食子酸、阿魏酸、香豆酸等12种多酚组分;所得多酚自由基清除率随质量浓度增加呈先升高后逐渐平稳的趋势,在质量浓度为3.0 mg/mL时对ABTS阳离子自由基、超氧阴离子自由基和羟基自由基清除率分别达到73.24%、59.92%和51.41%,浓度为1.25 mg/mL时对DPPH自由基清除率达到76.79%,各组清除率小于同质量浓度抗坏血酸溶液。研究结果可为BSDF中多酚类物质的开发利用提供理论参考。Abstract: To investigate the optimal extraction process, component composition and antioxidant activity of bound polyphenols in bamboo shoots dietary fiber (BSDF), the extraction time, extraction temperature, alkali concentration and liquid-to-material ratio on the extraction yield were researched in this paper. Thereafter, the extraction process of bound polyphenols in BSDF was optimized by Box-Behnken response surface experiment based on single-factor experiments. The components of bound polyphenols were preliminarily identified and the antioxidant activity such as ABTS cation radicals, DPPH radicals, superoxide anion radicals and hydroxyl radicals were investigated. The results showed that alkali concentration of 9 mol/L, extraction temperature of 40 °C, extraction time of 4 h and liquid-to-material ratio of 20:1 mL/g were the optimal condition. Under this condition, the predicted extraction amount of bound polyphenols in BSDF was 27.95 mg GAE/g BSDF while the actual extraction amount was 26.68±0.73 mg GAE/g BSDF, with a prediction accuracy of 95.46%. There were 12 polyphenolic components including sinapic acid, gallic acid, ferulic acid, and coumaric acid were preliminarily identified by ultra performance liquid chromatography-triple quadrupole mass spectrometer. The free radical scavenging rate of polyphenols extract initially increased and then gradually stabilized with the increase of mass concentration. The scavenging rates of ABTS cation radical, superoxide anion radical and hydroxyl radical reached 73.24%, 59.92% and 51.41% with mass concentration of 3.0 mg/mL, respectively. The scavenging rate of DPPH radical reached 76.79% when the concentration was 1.25 mg/mL. The scavenging rate of each group was less than that of ascorbic acid solution of the same mass concentration. The results can provide theoretical reference for the development and utilization of polyphenols in BSDF.
-
表 1 提取BSDF中结合多酚的响应面试验设计因素与水平
Table 1. Response surface test design factors and levels for extraction of bound polyphenols from BSDF
水平 A 提取时间(h) B 提取温度
(°C)C 碱液浓度
(mol/L)D 液料比
(mL/g)−1 3 35 8 15:1 0 4 40 9 20:1 1 5 45 10 25:1 表 2 提取BSDF中结合多酚的响应面结果
Table 2. Results of extraction of bound polyphenol response surface from BSDF
试验号 A B C D 多酚提取量(mg GAE/g BSDF) 1 1 1 0 0 23.61±0.89 2 0 0 1 1 21.58±1.37 3 0 1 −1 0 19.03±0.77 4 0 −1 1 0 19.87±0.91 5 0 0 −1 −1 17.14±0.39 6 0 0 0 0 27.19±0.32 7 1 0 0 1 24.02±0.27 8 −1 0 −1 0 19.07±1.03 9 0 −1 0 −1 18.73±0.88 10 0 1 1 0 23.07±0.97 11 0 0 0 0 27.32±0.83 12 1 0 −1 0 19.93±0.58 13 0 −1 −1 0 19.88±0.29 14 0 0 0 0 26.89±0.71 15 0 1 0 −1 20.12±1.07 16 −1 0 0 1 19.08±0.77 17 1 0 1 0 20.18±1.37 18 −1 −1 0 0 18.36±0.97 19 0 0 0 0 28.02±0.81 20 1 −1 0 0 20.93±0.76 21 0 −1 0 1 23.98±0.33 22 1 0 0 −1 18.82±0.45 23 0 0 −1 1 21.76±0.98 24 −1 0 0 −1 17.32±0.79 25 −1 0 1 0 19.82±0.63 26 0 0 0 0 27.83±0.81 27 0 1 0 1 24.76±0.89 28 0 0 1 −1 18.36±0.91 29 −1 1 0 0 20.76±0.68 表 3 二次响应面模型的方差分析
Table 3. ANOVA for the quadratic response surface model
来源 平方和 自由度 均方 F值 P值 显著性 模型 300.77 14 21.48 28.10 <0.0001 ** A 14.26 1 14.26 18.65 0.0007 ** B 7.68 1 7.68 10.04 0.0068 ** C 3.07 1 3.07 4.02 0.0648 D 50.80 1 50.80 66.44 <0.0001 ** AB 0.0196 1 0.0196 0.0256 0.8751 AC 0.0625 1 0.0625 0.0817 0.7791 AD 2.96 1 2.96 3.87 0.0693 BC 4.10 1 4.10 5.36 0.0362 * BD 0.0930 1 0.0930 0.1217 0.7324 CD 0.4900 1 0.4900 0.6408 0.4368 A2 99.25 1 99.25 129.80 <0.0001 ** B2 40.92 1 40.92 53.52 <0.0001 ** C2 113.76 1 113.76 148.78 <0.0001 ** D2 76.78 1 76.78 100.41 <0.0001 ** 残差 10.70 14 0.7646 失拟项 9.84 10 0.9837 4.54 0.0791 误差项 0.8674 4 0.2168 总和 311.47 28 注:*显著性差异(P<0.05);**极显著性差异(P<0.01)。 表 4 最佳条件下提取BSDF中结合多酚的预测值和试验值
Table 4. The predicted and experimental values of binding polyphenols in BSDF extracted under optimal conditions
提取时间(h) 提取温度(°C) 碱液浓度(mol/L) 液料比(mL/g) 多酚提取量(mg GAE/g BSDF) 预测条件 4.17 40.83 9.07 21.57:1 27.95 实际条件 4 40 9 20:1 26.68±0.73 表 5 BSDF中结合多酚初步筛选目标物
Table 5. The preliminary screening of target compounds by binding polyphenols in BSDF
编号 离子碎片 绝对强度 相对强度 化合物名称 1 111.25 1770735 14.24 邻苯二酚 2 123.3 681403 5.48 对羟基苯甲醛 3 137.2 156168 15.29 2-羟基苯甲酸 4 140.25 1632401 13.12 香豆酸 5 147.2 489541 47.93 肉桂酸 6 155.2 2703137 21.73 原儿茶酸 7 167.3 675189 5.43 香草酸 8 179.3 79375 7.77 咖啡酸 9 183.25 12437342 100 没食子酸 10 195.2 106819 10.46 阿魏酸 11 198.1 172177 16.86 没食子酸乙酯 12 224.25 1897778 15.26 芥子酸 13 228.4 784631 6.31 白藜芦醇 14 272.3 67057 6.56 柚皮素 15 286.25 62906 6.16 山柰酚 16 288.1 2228613 17.92 儿茶素 17 301.35 66096 6.47 槲皮素 18 305.2 761738 6.12 原儿茶素 19 308.25 298912 29.26 花色苷 20 317.3 76409 7.48 杨梅素 21 335.3 53527 5.24 黄素1 22 355.35 4236422 34.06 绿原酸 23 446.4 2638130 21.21 黄芩苷 24 463.7 59762 5.85 异槲皮素 25 628.5 2066984 16.62 芦丁 -
[1] NIRMALAC, BISHT M S, LAISHRAM M. Bioactive compounds in bamboo shoots: Health benefits and prospects for developing functional foods[J]. International Journal of Food Science & Technology,2014,49(6):1425−1431. [2] 赵泓舟, 杜木英, 吴良如, 等. 方竹笋膳食纤维作为益生元对乳酸菌生长的影响[J]. 食品与发酵工业,2022,48(6):174−180. [ZHAO H Z, DU M Y, WU L R, et al. Effects of dietary fiber of bamboo shoots as prebiotics on the growth of lactic acid bacteria[J]. Food and Fermentation Industries,2022,48(6):174−180.ZHAO H Z, DU M Y, WU L R, et al. Effects of dietary fiber of bamboo shoots as prebiotics on the growth of lactic acid bacteria[J]. Food and Fermentation Industries, 2022, 48(6): 174-180. [3] GILL S K, ROSSI M, BAJKA B, et al. Dietary fibre in gastrointestinal health and disease[J]. Nature Reviews. Gastroenterology & Hepatology,2020,18(2):101−116. [4] TANG C D, WU L R, ZHANG F S, et al. Comparison of different extraction methods on the physicochemical, structural properties, and in vitro hypoglycemic activity of bamboo shoot dietary fibers[J]. Food Chemistry,2022,386:132642. doi: 10.1016/j.foodchem.2022.132642 [5] ZHENG J, WU J H, DAI Y Y, et al. Influence of bamboo shoot dietary fiber on the rheological and textural properties of milk pudding[J]. LWT,2017,84:364−369. doi: 10.1016/j.lwt.2017.05.051 [6] 李可, 李燕, 刘俊雅, 等. 竹笋膳食纤维结合预乳化植物油对低脂猪肉糜乳化稳定性和流变学特性的影响[J]. 食品与发酵工业,2020,46(20):9−14. [LI K, LI Y, LIU J Y, et al. Effects of dietary fiber of bamboo shoot combined with pre-emulsified vegetable oil on emulsifying stability and rheological properties of pork mince[J]. Food and Fermentation Industries,2020,46(20):9−14. doi: 10.13995/j.cnki.11-1802/ts.024420LI K, LI Y, LIU J Y, et al. Effects of dietary fiber of bamboo shoot combined with pre-emulsified vegetable oil on emulsifying stability and rheological properties of pork mince[J]. Food and Fermentation Industries, 2020, 46(20): 9-14. doi: 10.13995/j.cnki.11-1802/ts.024420 [7] FRAGA C G, CROFT K D, KENNEDY D O, et al. The effects of polyphenols and other bioactives on human health[J]. Food & Function,2019,10(2):514−528. [8] 周子艺, 夏晓霞, 冉欢, 等. 植物多酚通过RAGE/MAPK/NF-κB通路抑制AGEs诱导的炎症反应研究进展[J]. 食品科学,2022,43(1):306−312. [ZHOU Z Y, XIA X X, RAN H, et al. Research progress of plant polyphenols in inhibiting AGES-induced inflammation through RAGE/MAPK/NF-κB pathway[J]. Food Science,2022,43(1):306−312. doi: 10.7506/spkx1002-6630-20210428-400ZHOU Z Y, XIA X X, RAN H, et al. Research progress of plant polyphenols in inhibiting AGES-induced inflammation through RAGE/MAPK/NF-κB pathway[J]. Food Science, 2022, 43(1): 306-312. doi: 10.7506/spkx1002-6630-20210428-400 [9] JOSHI S S, HOWELL A B, DSOUZA D H. Antiviral effects of blueberry proanthocyanidins against Aichi virus[J]. Food Microbiology,2019,82:202−208. doi: 10.1016/j.fm.2019.02.001 [10] 陈慧, YOSHINORI Katakura, 扈洪波, 等. SIRT3多酚激活剂的筛选及其对UVB诱导HaCaT细胞衰老的修复作用[J]. 食品科学,2021,42(5):115−121. [CHEN H, YOSHINORI K, HU H B, et al. Screening of SIRT3 polyphenol activator and its repair effect on UVB-induced senescence of HaCaT cells[J]. Food Science,2021,42(5):115−121. doi: 10.7506/spkx1002-6630-20191230-357CHEN H, YOSHINORI Katakura, HU H B, et al. Screening of SIRT3 polyphenol activator and its repair effect on UVB-induced senescence of HaCaT cells[J]. Food science, 2021, 42(5): 115-121. doi: 10.7506/spkx1002-6630-20191230-357 [11] IZLIA J, ARROYO-MAYA, JOSE C, et al. Characterization of flavonoid-protein interactions using fluorescence spectroscopy: Binding of pelargonidin to dairy proteins[J]. Food Chemistry,2016,213(15):431−439. [12] 刘甜甜, 吴晓娟, 吴伟. 多酚-膳食纤维相互作用及其影响多酚生物利用率研究进展[J]. 中国粮油学报,2022,37(7):1−12. [LIU T T, WU X J, WU W. Research progress on the interaction between polyphenol and dietary fiber and its effect on the bioavailability of polyphenols[J]. Chinese Journal of Cereals and Oils,2022,37(7):1−12.LIU T T, WU X J, WU W. Research progress on the interaction between polyphenol and dietary fiber and its effect on the bioavailability of polyphenols[J]. Chinese Journal of Cereals and Oils, 2022, 37(7): 1−12. [13] PHAN A D, NETZEL G, WANG D, et al. Binding of dietary polyphenols to cellulose: structural and nutritional aspects[J]. Food Chemistry,2015,171:388−396. doi: 10.1016/j.foodchem.2014.08.118 [14] 张兴杰. 菠萝蜜膳食纤维中结合多酚的提取工艺优化及其消化酵解特性的研究[D]. 南昌: 南昌大学, 2021.ZHANG X J. Study on the extraction process optimization and digestion and digestion characteristics of polyphenols from dietary fiber of jackfruit[D]. Nanchang: Nanchang University, 2021. [15] 夏婷, 赵超亚, 杜鹏, 等. 食品中多酚类化合物种类、提取方法和检测技术研究进展[J]. 食品与发酵工业,2019,45(5):231−238. [XIA T, ZHAO C Y, DU P, et al. Research progress on the types, extraction methods and detection technology of polyphenolic compounds in food[J]. Food and Fermentation Industries,2019,45(5):231−238. doi: 10.13995/j.cnki.11-1802/ts.017498XIA T, ZHAO C Y, DU P, et al. Research progress on the types, extraction methods and detection technology of polyphenolic compounds in food[J]. Food and fermentation industries, 2019, 45(5): 231-238. doi: 10.13995/j.cnki.11-1802/ts.017498 [16] 汪楠, 黄山, 张月, 等. 高温蒸煮协同纤维素酶改性竹笋膳食纤维[J]. 食品与发酵工业,2020,46(4):13−18. [WANG N, HUANG S, ZHANG Y, et al. Modification of bamboo shoot dietary fiber by high temperature cooking combined with cellulase[J]. Food and Fermentation Industries,2020,46(4):13−18. doi: 10.13995/j.cnki.11-1802/ts.022326WANG N, HUANG S, ZHANG Y, et al. Modification of bamboo shoot dietary fiber by high temperature cooking combined with cellulase[J]. Food and Fermentation Industries, 2020, 46(4): 13-18. doi: 10.13995/j.cnki.11-1802/ts.022326 [17] 郑玉婷. 绿豆皮膳食纤维中结合多酚的提取优化和抗氧化活性及其对淀粉酶活性的影响[D]. 南昌: 南昌大学, 2021.ZHENG Y T. Extraction optimization and antioxidant activity of bound polyphenols from mung bean peel dietary fiber and its effect on amylase activity[D]. Nanchang: Nanchang University, 2021. [18] LIU S, JIA M, CHEN J, et al. Removal of bound polyphenols and its effect on antioxidant and prebiotics properties of carrot dietary fiber[J]. Food Hydrocolloids,2019,93:284−292. doi: 10.1016/j.foodhyd.2019.02.047 [19] 蔡惠钿, 张逸. 无花果多糖分离纯化工艺及抗氧化性能研究[J]. 中国调味品,2021,46(1):1−4. [CAI H T, ZHANG Y. Study on separation and purification technology and antioxidant activity of FIG polysaccharide[J]. Chinese Condiments,2021,46(1):1−4. doi: 10.3969/j.issn.1000-9973.2021.01.001CAI H T, ZHANG Y. Study on separation and purification technology and antioxidant activity of FIG polysaccharide[J]. Chinese condiments, 2021, 46(1): 1-4. doi: 10.3969/j.issn.1000-9973.2021.01.001 [20] 许建本, 苏秀芳, 莫耀芳. 超声波辅助法提取假苹婆树叶总黄酮及其清除羟自由基能力[J]. 新宝登录入口(中国)有限公司,2018,39(23):199−202. [XU J B, SU X F, MO Y F. Ultrasound-assisted extraction of total flavonoids from Sterculia lanceolata and scavenging capacity on hydroxyl free radical[J]. Science and Technology of Food Industry,2018,39(23):199−202. doi: 10.13386/j.issn1002-0306.2018.23.035XU J B, SU X F, MO Y F. Ultrasound-assisted extraction of total flavonoids from Sterculia lanceolata and scavenging capacity on hydroxyl free radical[J]. Science and Technology of Food Industry, 2018, 39(23): 199-202. doi: 10.13386/j.issn1002-0306.2018.23.035 [21] DANIELLA P, ANNE S, FABIANO T, et al. Lab and pilot-scale ultrasound-assisted water extraction of polyphenols from apple pomace[J]. Journal of Food Engineering,2012,111:73−81. doi: 10.1016/j.jfoodeng.2012.01.026 [22] WANG K L, LI M, WEN X, et al. Optimization of ultrasound-assisted extraction of okra (Abelmoschus esculentus L. Moench) polysaccharides based on response surface methodology and antioxidant activity[J]. International Journal of Biological Macromolecules,2018,114:1056−1063. doi: 10.1016/j.ijbiomac.2018.03.145 [23] NAYAK A, BHUSHAN B, ROSALES A, et al. Valorisation potential of Cabernet grape pomace for the recovery of polyphenols: Process intensification, optimisation and study of kinetics[J]. Food and Bioproducts Processing,2018,109:74−85. doi: 10.1016/j.fbp.2018.03.004 [24] SUN S, HUANG S, SHI Y, et al. Extraction, isolation, characterization and antimicrobial activities of non-extractable polyphenols from pomegranate peel[J]. Food Chemistry,2021,351:129232. doi: 10.1016/j.foodchem.2021.129232 [25] WANG Z, WANG C, ZHANG C, et al. Ultrasound-assisted enzyme catalyzed hydrolysis of olive waste and recovery of antioxidant phenolic compounds[J]. Innovative Food Science & Emerging Technologies,2017,44:224−234. [26] 陈怡君, 王晓慧, 陈艳萍, 等. 响应面法优化超声波-微波协同辅助酸法提取猕猴桃皮果胶工艺及果胶理化性质分析[J]. 食品与发酵工业,2022,48(13):238−246. [CHEN Y J, WANG X H, CHEN Y P, et al. Optimization of Ultrasound-microwave-assisted acid extraction technology and Physicochemical properties of pectin from kiwifruit peel by response surface method[J]. Food and Fermentation Industries,2022,48(13):238−246. doi: 10.13995/j.cnki.11-1802/ts.029672CHEN Y J, WANG X H, CHEN Y P, et al. Optimization of Ultrasound-microwave-assisted acid extraction technology and Physicochemical properties of pectin from kiwifruit peel by response surface method[J]. Food and Fermentation Industries, 2022, 48(13): 238-246. doi: 10.13995/j.cnki.11-1802/ts.029672 [27] 李安平, 谢碧霞, 钟秋平, 等. 毛竹春笋提取物抗氧化活性研究[J]. 食品科学,2008(5):97−100. [LI A P, XIE B X, ZHONG Q P, et al. Study on antioxidant activity of extracts from bamboo shoots[J]. Food Science,2008(5):97−100. doi: 10.3321/j.issn:1002-6630.2008.05.013LI A P, XIE B X, ZHONG Q P, et al. Study on antioxidant activity of extracts from bamboo shoots[J]. Food Science, 2008(5): 97-100. doi: 10.3321/j.issn:1002-6630.2008.05.013 [28] 任旺, 叶秀娟, 李婷婷, 等. 麻竹笋中多酚类化合物的提取及挥发性成分分析[J]. 食品科学,2014,35(16):120−123. [REN W, YE X J, LI T T, et al. Extraction of polyphenolic compounds and analysis of volatile constituents from bamboo shoot[J]. Food Science,2014,35(16):120−123. doi: 10.7506/spkx1002-6630-201416023REN W, YE X J, et al. Extraction of polyphenolic compounds and analysis of volatile constituents from bamboo shoot[J]. Food science, 2014, 35(16): 120-123. doi: 10.7506/spkx1002-6630-201416023 [29] 庄国栋, 汤丹, 陈永生. 结合态多酚改善肠道氧化应激与肠道屏障的研究进展[J]. 新宝登录入口(中国)有限公司,2022,43(11):440−448. [ZHUANG G D, TANG D, CHEN Y S. Research progress of conjugated polyphenols in improving intestinal oxidative stress and intestinal barrier[J]. Science and Technology of Food Industry,2022,43(11):440−448. doi: 10.13386/j.issn1002-0306.2021070114ZHUANG G D, TANG D, CHEN Y S. Research progress of conjugated polyphenols in improving intestinal oxidative stress and intestinal barrier[J]. Science and Technology of Food Industry, 2022, 43(11): 440-448. doi: 10.13386/j.issn1002-0306.2021070114 [30] WANG Y L, CHEN J, WANG D M, et al. A systematic review on the composition, storage, processing of bamboo shoots: Focusing the nutritional and functional benefits[J]. Journal of Functional Foods,2020,71:104015. doi: 10.1016/j.jff.2020.104015 [31] 石艳宾, 耿璐, 赵雅雯, 等. 龙葵果多酚物质响应面提取工艺优化及抗氧化分析[J]. 食品工业,2022,43(4):126−131. [SHI Y B, GENG L, ZHAO Y W, et al. Optimization of response surface extraction process and antioxidant analysis of polyphenols from Solanum nigrum fruit[J]. Food Industry,2022,43(4):126−131.SHI Y B, GENG L, ZHAO Y W, et al. Optimization of response surface extraction process and antioxidant analysis of polyphenols from Solanum nigrum fruit[J]. Food Industry, 2022, 43(4): 126-131. [32] 胡丽媛, 邱然. 麦汁及啤酒中的单体酚酸及它们对啤酒抗自由基活性的贡献[J]. 啤酒科技,2010(3):57−64. [HU L Y, QIU R. Monomeric phenolic acids in wort and beer and their contribution to anti-free radical activity in beer[J]. Beer Science and Technology,2010(3):57−64.HU L Y, QIU R. Monomeric phenolic acids in wort and beer and their contribution to anti-free radical activity in beer[J]. Beer Science and Technology, 2010(3): 57-64. [33] CONG Y X, ZHENG M M, HUANG F H, et al. Sinapic acid derivatives in microwave-pretreated rapeseeds and minor components in oils[J]. Journal of Food Composition and Analysis,2020,87:103394. doi: 10.1016/j.jfca.2019.103394 -