Recent Advances in Wheat Bran Polysaccharides: Extraction, Structure and Bioactivities
-
摘要: 小麦麸皮是小麦加工过程中产生的副产物,含有众多的营养成分,如蛋白质、维生素、膳食纤维、酚类和多糖等。研究表明,小麦麸皮多糖具有预防糖尿病、降低血糖、提高免疫力、抗肿瘤等作用,在日常用品、保健食品和医药用品方面具有广阔的开发前景。小麦麸皮多糖提取方法和纯化方法不同,均会造成麸皮多糖结构上的差异,然而结构影响其生物活性。因此,探究小麦麸皮多糖的结构特征对揭示其生物活性作用具有重要意义。本文主要对近年来小麦麸皮多糖的提取方法、分离纯化、结构表征及生理功能等方面的研究进行阐述,同时探讨了小麦麸皮多糖结构与其生物活性之间的构效关系,并对小麦麸皮多糖目前存在的问题和应用前景进行展望,旨在为小麦麸皮多糖在保健和医药等方面的利用和研究提供理论依据和新的思路。Abstract: Wheat bran is a by-product of wheat processing, which contains many nutrients, such as protein, vitamins, dietary fiber, phenols and polysaccharides. Studies have shown that wheat bran polysaccharide can prevent diabetes, lower blood sugar, improve immunity, anti-tumor and other effect. It has broad development prospects in daily necessities, health food and medical supplies. Different extraction and purification methods of wheat bran polysaccharides will cause differences in the structure of wheat bran polysaccharides, but the structure affects its biological activity. Therefore, it is of great significance to explore the structural characteristics of wheat bran polysaccharide to reveal its biological activity. In this paper, the extraction method, separation and purification, structure characterization and physiological function of wheat bran polysaccharide in recent years are described. At the same time, the structure-activity relationship between the structure of wheat bran polysaccharide and its biological activities is discussed. The present problems and application prospect of wheat bran polysaccharide are prospected in order to provide theoretical basis and new ideas for the utilization and research of wheat bran polysaccharide in health care and medicine.
-
Key words:
- wheat bran /
- polysaccharides /
- purification /
- structure /
- biological activity
-
表 1 小麦麸皮多糖提取条件
Table 1. The wheat bran polysaccharide extraction condition
表 2 小麦麸皮多糖提取方法
Table 2. The wheat bran polysaccharide extraction method
提取方法 原理 特点 参考文献 热水浸提法 依据相似相溶的原理 安全经济,操作简单,设备要求不高,时间较长,提取率较低 [22] 酸浸提法 使糖苷键断裂获得单糖或低聚糖 可以缩短提取的时间,提高得率,但是容易破环多糖的活性和空间结构 [23] 碱浸提法 通过对水不溶性多糖的降解 可以缩短提取的时间,提高得率,但是容易破环多糖的活性和空间结构 [23] 酶解提取法 加入适当的酶来降解细胞壁 条件比较温和,提取率高,提取时间短,成本低 [24-25] 超声波辅助提取法 利用高的机械波破裂细胞壁 提取方便,操作简单,对植物中化合物的结构,分子特性的损害较小 [26] 微波辅助提取法 通过微波作用加剧分子间的碰撞,裂解细胞释放多糖 缩短提取的时间,能耗较小,提取剂的用量小,符合环保的要求 [27] 表 3 小麦麸皮多糖中单糖和糖醛酸的组成
Table 3. Composition of monosaccharide and uronic acid of wheat bran polysaccharide
多糖
名称单糖摩尔组成(%)/摩尔比例 阿拉伯糖(Ara) 葡萄糖(Glu) 甘露糖(Man) 鼠李糖
(Rha)半乳糖
(Gal)木 糖(Xyl) 核 糖
(Rib)岩藻糖
(Fuc)半乳糖醛酸(GalA) 葡萄糖醛酸
(GluA)参考
文献WBAX 30.3 1.6 − − 2.8 − − − 0.5 1.9 [15] EXy40 25.65 20.95 2.57 − 3.06 43.78 − − − 3.99 [37] EXy60 37.97 9.15 5.98 − 5.86 38.49 − − − 2.55 [37] EXy80 42.44 6.83 12.90 − 8.32 28.11 − − − 1.39 [37] EXy90 20.35 5.44 2.12 − 8.00 12.94 − − − 2.02 [37] WAX-1 1.00 5.30 − − 4.47 2.30 − − − − [35] AXA-1 1.00 0.05 − − 0.08 2.35 − − − − [35] WPBS−50 12.83 21.38 7.57 1.25 7.03 42.54 0.72 0.80 4.62 1.26 [33] WPBS−60 17.66 2.44 1.50 6.72 10.77 19.98 10.88 8.99 8.67 12.39 [33] WPBS−70 12.73 51.34 9.58 1.37 6.05 15.38 1.33 0.31 1.21 0.71 [33] WPBS−80 24.13 3.60 0.96 8.97 1.59 53.30 3.02 1.25 0.90 2.28 [33] WBP 7.6 8.9 − − − 12.5 − − − − [38] WBP 21.87 4.06 30.15 − 3.55 38.34 − − − − [39] WBP 5.90 2.06 1.00 − 4.74 6.25 − − − − [30] WBP-1 18.33 50.25 1.48 0.09 3.14 26.13 0.12 − 0.03 0.43 [40] FWBP-1 32.66 17.43 2.65 1.20 2.13 43.32 0.12 0.32 0.04 0.13 [40] WBP 2.00 90.7 0.60 0.70 3.00 3.00 − − − − [36] WBP-F 2.60 93.8 − − − 3.60 − − − − [36] WBP 46 45 3.00 1.00 17.00 80.00 − − − − [41] FWBP 46 46 5.00 4.00 9.00 67.00 − − − − [41] FWBP-11 17.90 1.84 2.14 1.39 3.57 18.80 − 0.29 − − [41] FWBP-12 11.14 8.92 0.90 0.11 0.80 18.17 − 0.09 − − [41] FWBP-21 11.42 1.56 2.26 1.89 4.18 13.46 − 0.15 − − [41] FWBP-22 4.17 2.98 0.45 0.16 0.82 11.12 − 0.09 − − [41] 注:−表示未检测出。 表 4 小麦麸皮多糖中的糖链结构
Table 4. Sugar chain structure in wheat bran polysaccharide
表 5 小麦麸皮多糖中的分子量
Table 5. Molecular weight of wheat bran polysaccharides
多糖名称 多糖提取方法 分子量测
定方法分子量大
小(ku)参考
文献WBAX 热水浸提法 HPGPC 112 [15] WAX-1 超声辅助加碱浸提法 HPSEC 193 [22] AXA-1 超声辅助加碱浸提法 HPSEC 107 [22] EXy40 热水浸提法 GPC 23.52 [37] EXy60 热水浸提法 GPC 31.19 [37] EXy80 热水浸提法 GPC 10.38 [37] EXy90 热水浸提法 GPC 4.54 [37] AX-碱 加碱浸提法 HPSEC 700 [42] AX-木 超声辅助加木聚
糖酶浸提HPSEC 23 [42] AX-纤 超声辅助加纤维素
酶浸提HPSEC 12.8 [42] AEAXN 超声辅助加
碱浸提法HPLC 118.19 [26] AEAXN+H 加碱浸提法 HPLC 34.87 [26] AEAXB 加碱浸提法 HPLC 32.87 [26] AEAXB+N 加碱浸提法 HPLC 46.71 [26] WBP 热水浸提法 HPSEC-UV-MALLS-RI 911.7 [36] WBP-F 热水浸提法 HPSEC-UV-MALLS-RI 510.2 [36] 注:HPGPC:高效凝胶渗透色谱法;HPSEC:高效分子排阻色谱;GPC:凝胶渗透色谱法;HPLC:高效液相色谱法;HPSEC-UV-MALLS-RI:高效凝胶尺寸排阻色谱-十八角激光散色仪-示差检测仪-紫外检测器联用技术。 -
[1] ZHANG Yufeng, LOU Hongyao, GUO Dandan, et al. Identifying changes in the wheat kernel proteome under heat stress using iTRAQ[J]. The Crop Journal,2018,6(6):600−610. doi: 10.1016/j.cj.2018.04.003 [2] BROUILLET-FOURMANN S, CARROT C, MIGNARD N. Gelatinization and gelation of corn starch followed by dynamic mechanical spectroscopy analysis[J]. Rheologica Acta,2003,42(1−2):110−117. doi: 10.1007/s00397-002-0261-z [3] ONIPE O O, JIDEANI A I O, BESWA D. Composition and functionality of wheat bran and its application in some cereal food products[J]. International Journal of Food Science & Technology,2015,50(12):2509−2518. [4] SAFA Y, BHATTI H N, SULTAN M, et al. Synthesis, characterization and application of wheat bran/zinc aluminium and tea leaves waste/zinc aluminium biocomposites: Kinetics and thermodynamics modeling[J]. Desalination and Water Treatment,2016,57(53):25532−25541. doi: 10.1080/19443994.2016.1160439 [5] TAKAHASHI H, KASHIMURA M, KOISO H, et al. Use of ferulic acid as a novel candidate of growth inhibiting agent against Listeria monocytogenes in ready-to-eat food[J]. Food Control,2013,33(1):244−248. doi: 10.1016/j.foodcont.2013.03.013 [6] SARMA S M, SINGH D P, SINGH P, et al. Finger millet arabinoxylan protects mice from high-fat diet induced lipid derangements, inflammation, endotoxemia and gut bacterial dysbiosis[J]. International Journal of Biological Macromolecules,2018,106:994−1003. doi: 10.1016/j.ijbiomac.2017.08.100 [7] ZHAO L P, ZHANG F, DING X Y, et al. Gut bacteria selectively promoted by dietary fibers alleviate type 2 diabetes[J]. Science,2018,359(6380):1151−1156. doi: 10.1126/science.aao5774 [8] CAO L, LIU X Z, QIAN T X, et al. Antitumor and immunomodulatory activity of arabinoxylans: A major constituent of wheat bran[J]. International Journal of Biological Macromolecules,2010,48(1):160−164. [9] MORALES-BURGOS A M, CARVAJAL-MILLAN E, SOTELO-CRUZ N, et al. Highly cross-linked arabinoxylans microspheres as a microbiota-activated carrier for colon-specific insulin delivery[J]. European Journal of Pharmaceutics and Biopharmaceutics,2021,163:16−22. doi: 10.1016/j.ejpb.2021.02.014 [10] LI W I, ZHANG S Y, SMITH C. The molecular structure features-immune stimulatory activity of arabinoxylans derived from the pentosan faction of wheat flour[J]. Journal of Cereal Science,2015,62:81−86. doi: 10.1016/j.jcs.2014.12.002 [11] PARNIAKOV O, LEBOVKA N, VAN H E, et al. Pulsed electric field assisted pressure extraction and solvent extraction from mushroom (Agaricus bisporus)[J]. Food and Bioprocess Technology,2014,7(1):174−183. doi: 10.1007/s11947-013-1059-y [12] 陈凤莲. 酶法制备小麦麸皮戊聚糖的研究[J]. 食品科学,2008,29(11):391−394. [CHEN F L. Enzymatic production of pentosan from wheat bran[J]. Food Science,2008,29(11):391−394. doi: 10.3321/j.issn:1002-6630.2008.11.089CHEN F L. Enzymatic production of pentosan from wheat bran[J]. Food Science, 2008, 29(11): 391-394. doi: 10.3321/j.issn:1002-6630.2008.11.089 [13] VANGSØE C T, SØRENSEN J F, KNUDSEN K E B. Aleurone cells are the primary contributor to arabinoxylan oligosaccharide production from wheat bran after treatment with cell wall-degrading enzymes[J]. International Journal of Food Science & Technology,2019,54(10):2847−2853. [14] 朱翠玲, 顾正中, 沈婷, 等. 响应面分析优化小麦麸皮多糖的提取工艺[J]. 江苏农业科学,2017,45(13):169−172. [ZHU C L, GU Z Z, SHEN T, et al. Optimization of extraction process of polysaccharides from wheat bran by response surface methodology[J]. Jiangsu Agricultural Sciences,2017,45(13):169−172. doi: 10.15889/j.issn.1002-1302.2017.13.047ZHU C L, GU Z Z, SHEN T, et al. Optimization of extraction process of polysaccharides from wheat bran by response surface methodology[J]. Jiangsu Agricultural Sciences, 2017, 45(13): 169-172. doi: 10.15889/j.issn.1002-1302.2017.13.047 [15] 王鑫, 陈什康, 张婷, 等. 小麦麸皮粗多糖的基本结构特征、流变特性及其对体外消化酶抑制初探[J]. 南昌大学学报(理科版),2022,46(3):334−341. [WANG X, CHEN S K, ZHANG T, et al. Physicochemical properties and digestive enzymes in vitro inhibitory activities of polysaccharides from wheat bran[J]. Journal of Nanchang University (Natural Science),2022,46(3):334−341. doi: 10.3969/j.issn.1006-0464.2022.03.008WANG X, CHEN S K, ZHANG T, et al. Physicochemical properties and digestive enzymes in vitro inhibitory activities of polysaccharides from wheat bran[J]. Journal of Nanchang University(Natural Science), 2022, 46(3): 334-341. doi: 10.3969/j.issn.1006-0464.2022.03.008 [16] 丁长河, 阮文彬, 高雅君, 等. 小麦麸皮戊聚糖高温提取反应动力学及工艺优化[J]. 粮食与油脂,2017,30(7):88−93. [DING C H, RUAN W B, GAO Y J, et al. Research on reaction kinetics and process optimization of high temperature extraction of wheat bran pentosan[J]. Cereals & Oils,2017,30(7):88−93. doi: 10.3969/j.issn.1008-9578.2017.07.022DING C H, RUAN W B, GAO Y J, et al. Research on reaction kinetics and process optimization of high temperature extraction of wheat bran pentosan[J]. Cereals & Oils, 2017, 30(7): 88-93. doi: 10.3969/j.issn.1008-9578.2017.07.022 [17] 张朵朵, 朱婷伟, 陈复生, 等. 小麦麸皮阿拉伯木聚糖/豌豆分离蛋白复合物的乳化性能研究[J]. 食品研究与开发,2022,43(4):1−8. [ZHANG D D, ZHU T W, CHEN F S, et al. Emulsifying properties of wheat bran arabinoxylan/pea protein isolate complex[J]. Food Research and Development,2022,43(4):1−8. doi: 10.12161/j.issn.1005-6521.2022.04.001ZHANG D D, ZHU T W, CHEN F S, et al. Emulsifying properties of wheat bran arabinoxylan/pea protein isolate complex[J]. Food Research and Development, 2022, 43(4): 1-8. doi: 10.12161/j.issn.1005-6521.2022.04.001 [18] WANG J, SUN B, LIU Y, et al. Optimisation of ultrasound-assisted enzymatic extraction of arabinoxylan from wheat bran[J]. Food Chemistry,2014,150:482−488. doi: 10.1016/j.foodchem.2013.10.121 [19] 鲁振杰, 李娟, 陈正行, 等. 碱提条件对麸皮阿拉伯木聚糖组成、理化性质、流变学特性的影响[J]. 食品科学,2020,41(12):22−27. [LU Z J, LI J, CHEN Z X, et al. Effects of alkali extraction conditions on monosaccharide composition, physicochemical properties and rheological properties of arabinoxylan from wheat bran[J]. Food Science,2020,41(12):22−27. doi: 10.7506/spkx1002-6630-20190611-115LU Z J, LI J, CHEN Z X, et al. Effects of alkali extraction conditions on monosaccharide composition, physicochemical properties and rheological properties of arabinoxylan from wheat bran[J]. Food Science, 2020, 41(12): 22-27. doi: 10.7506/spkx1002-6630-20190611-115 [20] 司晓静. 阿拉伯木聚糖及其酶解物影响面筋蛋白热诱导聚集的机制研究[D]. 无锡: 江南大学, 2021SI X J. Study on the mechanism of effect of arabinoxylan and its hydrolysates on heat-induced aggregation of gluten[D]. Wuxi: Jiangnan University, 2021. [21] 黎芳, 刘佳, 王冉冉, 等. 小麦麸皮水不溶性阿拉伯木聚糖提取及其酶解产物分析[J]. 中国酿造,2019,38(2):122−126. [LI F, LIU J, WANG R R, et al. Extraction of water insoluble arabinoxylan from wheat bran and analysis of its enzymatic hydrolyzed products[J]. China Brewing,2019,38(2):122−126. doi: 10.11882/j.issn.0254-5071.2019.02.023LI F, LIU J, WANG R R, et al. Extraction of water insoluble arabinoxylan from wheat bran and analysis of its enzymatic hydrolyzed products[J]. China Brewing, 2019, 38(2): 122-126. doi: 10.11882/j.issn.0254-5071.2019.02.023 [22] LÜ Q Q, CAO J J, LIU R, et al. Structural characterization, α-amylase and α-glucosidase inhibitory activities of polysaccharides from wheat bran[J]. Food Chemistry, 2021, 341(Mar. 30 Pt. 1): 128218.1-11. [23] BIELY P, SINGH S, PUCHART V. Towards enzymatic breakdown of complex plant xylan structures: State of the art[J]. Biotechnology Advances: An International Review Journal,2016,34(7):1260−1274. [24] 景永帅, 马云凤, 李明松, 等. 植物多糖结构解析方法研究进展[J]. 新宝登录入口(中国)有限公司,2022,43(3):411−421. [JING Y S, MA Y F, LI M S, et al. Research progress in analytical methods for structures of phytogenic polysaccharides[J]. Science and Technology of Food Industry,2022,43(3):411−421. doi: 10.13386/j.issn1002-0306.2021010181JING Y S, MA Y F, LI M S, et al. Research progress in analytical methods for structures of phytogenic polysaccharides[J]. Science and Technology of Food Industry, 2022, 43(3): 411-421. doi: 10.13386/j.issn1002-0306.2021010181 [25] 赵颖, 宋新波, 张丽娟, 等. 高效凝胶色谱法测定甘草多糖分子量及其分子量分布[J]. 天津中医药,2015,32(1):46−48. [ZHAO Y, SONG X B, ZHANG L J, et al. Determination of molecular weight and weight distribution in licorice polysaccharide by HPGPC[J]. Tianjin Journal of Traditional Chinese Medicine,2015,32(1):46−48.ZHAO Y, SONG X B, ZHANG L J, et al. Determination of molecular weight and weight distribution in licorice polysaccharide by HPGPC[J]. Tianjin Journal of Traditional Chinese Medicine, 2015, 32(1): 46-48. [26] 杨莎, 郭晓娜, 朱科学, 等. 碱提方法对小麦麸皮阿拉伯木聚糖结构及面团特性的影响[J]. 中国粮油学报,2017,32(11):8−13,33. [YANG S, GUO X N, ZHU K X, et al. Effect of arabinoxylan extracted by different methods on the dough thermo-mechanical and rheological properties[J]. Journal of the Chinese Cereals and Oils Association,2017,32(11):8−13,33. doi: 10.3969/j.issn.1003-0174.2017.11.002YANG S, GUO X N, ZHU K X, et al. Effect of arabinoxylan extracted by different methods on the dough thermo-mechanical and rheological properties[J]. Journal of the Chinese Cereals and Oils Association, 2017, 32(11): 8-13, 33. doi: 10.3969/j.issn.1003-0174.2017.11.002 [27] WANG J, BAI J, FAN M, et al. Cereal-derived arabinoxylans: Structural features and structure-activity correlations[J]. Trends in Food Science & Technology,2020,96:157−65. [28] 张媛, 冯新月, 常思源, 等. 超声-酶法水解小麦麸皮制备低聚木糖的研究[J]. 上海化工,2021,46(5):23−26. [ZHANG Y, FENG X Y, CHANG S Y, et al. Study on production of xylooligosaccharides from wheat bran by ultrasonic-enzymatic hydrolysis[J]. Shanghai Chemical Industry,2021,46(5):23−26. doi: 10.3969/j.issn.1004-017X.2021.05.009ZHANG Y, FENG X Y, CHANG S Y, et al. Study on production of xylooligosaccharides from wheat bran by ultrasonic-enzymatic hydrolysis[J]. Shanghai Chemical Industry, 2021, 46(5): 23-26. doi: 10.3969/j.issn.1004-017X.2021.05.009 [29] 范玲, 马森, 王晓曦, 等. 微波-超声波辅助提取小麦麸皮中酚基木聚糖的研究[J]. 河南工业大学学报(自然科学版),2014,35(6):25−29. [FAN L, MA S, WANG X X, et al. Study on microwave-ultrasonic-assisted extraction of phenolic xylans from wheat bran[J]. Journal of Henan University of Technology (Natural Science Edition),2014,35(6):25−29.FAN L, MA S, WANG X X, et al. Study on microwave-ultrasonic-assisted extraction of phenolic xylans from wheat bran[J]. Journal of Henan University of Technology(Natural Science Edition), 2014, 35(6): 25-29. [30] SHANG X L, LIU C Y, DONG H Y, et al. Extraction, purification, structural characterization, and antioxidant activity of polysaccharides from wheat bran[J]. Journal of Molecular Structure, 2021, 1233. [31] LI S Q, SHAH N P. Antioxidant and antibacterial activities of sulphated polysaccharides from Pleurotus eryngii and Streptococcus thermophilus ASCC 1275[J]. Food Chemistry,2014,165:262−270. doi: 10.1016/j.foodchem.2014.05.110 [32] XU Y Q, LIU N Y, FU X T, et al. Structural characteristics, biological, rheological and thermal properties of the polysaccharide and the degraded polysaccharide from raspberry fruits[J]. International Journal of Biological Macromolecules: Structure, Function and Interactions,2019,132:109−118. [33] 杜涓, 安晓萍, 刘娜, 等. 分级醇沉发酵麸皮多糖的成分分析与抗氧化活性研究[J]. 新宝登录入口(中国)有限公司,2020,41(5):58−62. [DU J, AN X P, LIU N, et al. Studies on composition analysis and antioxidant activities of bran polysaccharides by fractional alcohol submerged fermentation[J]. Science and Technology of Food Industry,2020,41(5):58−62. doi: 10.13386/j.issn1002-0306.2020.05.010DU J, AN X P, LIU N, et al. Studies on composition analysis and antioxidant activities of bran polysaccharides by fractional alcohol submerged fermentation[J]. Science and Technology of Food Industry, 2020, 41(5): 58-62. doi: 10.13386/j.issn1002-0306.2020.05.010 [34] 陈红, 杨许花, 查勇, 等. 植物多糖提取、分离纯化及鉴定方法的研究进展[J]. 安徽农学通报,2021,27(22):32−35. [CHEN H, YANG X H, ZHA Y, et al. Research progress in extraction, purification and identification of plant polysaccharides[J]. Anhui Agricultural Science Bulletin,2021,27(22):32−35. doi: 10.3969/j.issn.1007-7731.2021.22.011CHEN H, YANG X H, ZHA Y, et al. Research progress in extraction, purification and identification of plant polysaccharides[J]. Anhui Agricultural Science Bulletin, 2021, 27(22): 32-35. doi: 10.3969/j.issn.1007-7731.2021.22.011 [35] 吕青青. 小麦麸皮多糖的结构表征、硒化改性及生理活性研究[D]. 合肥: 合肥工业大学, 2020LÜ Q Q. Structural characterization, selenylation and physiological activities of polysaccharides from wheat bran[D]. Hefei: Hefei University of Technology, 2020. [36] CAO R A, JI R X, TABARSA M, et al. Extraction, structural elucidation and immunostimulating properties of water-soluble polysaccharides from wheat bran[J]. Journal of Food Biochemistry,2020,44(9):13364. [37] 曲鹏辉, 滕超, 鹿发展, 等. 小麦麸皮木聚糖理化性质及抗氧化活性研究[J]. 食品科学技术学报,2021,39(5):49−55. [QU P H, TENG C, LU F Z, et al. Study on physicochemical properties and antioxidant activity of xylan extracted from wheat bran[J]. Journal of Food Science and Technology,2021,39(5):49−55.QU P H, TENG C, LU F Z, et al. Study on physicochemical properties and antioxidant activity of xylan extracted from wheat bran[J]. Journal of Food Science and Technology, 2021, 39(): 49-55. [38] BELEN N O, JOSE A J, CARRIE W, et al. Near infrared reflectance spectroscopy as a tool to predict non-starch polysaccharide composition and starch digestibility profiles in common monogastric cereal feed ingredients[J]. Animal Feed Science and Technology,2022,285:115214. doi: 10.1016/j.anifeedsci.2022.115214 [39] YANG W W, WU J, LIU W M, et al. Structural characterization, antioxidant and hypolipidemic activity of Grifola frondosa polysaccharides in novel submerged cultivation[J]. Food Bioscience,2021,42:101187. [40] CHEN Q Y, WANG R F, WANG Y, et al. Characterization and antioxidant activity of wheat bran polysaccharides modified by Saccharomyces cerevisiae and Bacillus subtilis fermentation[J]. Journal of Cereal Science,2021,97:103157. doi: 10.1016/j.jcs.2020.103157 [41] 李暄. 发酵麸皮多糖提取、分离纯化及生物活性研究[D]. 呼和浩特: 内蒙古农业大学, 2019LI X. Extraction, separation purification and biological activity analysis of fermented wheat bran polysaccharide[D]. Hohhot: Inner Mongolia Agricultural University, 2019. [42] 张秀敏, 周增超, 乔晋丽, 等. 麦麸品种与提取方式对阿拉伯木聚糖结构及抗氧化性的影响[J]. 食品科学,2023,44(3):10. [ZHANG X M, ZHOU Z C, QIAO J L, et al. Effects of wheat bran varieties and extraction methods on the structure and antioxidant activity of arabinoxylan[J]. Food Science,2023,44(3):10. doi: 10.7506/spkx1002-6630-20220106-050ZHANG X M, ZHOU Z C, QIAO J L, et al. Effects of wheat bran varieties and extraction methods on the structure and antioxidant activity of arabinoxylan[J]. Food Science, 2023, 44(3): 10. doi: 10.7506/spkx1002-6630-20220106-050 [43] MORALES D, SMIDERLE F R, VILLALVA M, et al. Testing the effect of combining innovative extraction technologies on the biological activities of obtained β-glucan-enriched fractions from lentinula edodes[J]. Journal of Functional Foods,2019,60:103446. doi: 10.1016/j.jff.2019.103446 [44] SUN H Y, LI C Y, NI Y J, et al. Ultrasonic/microwave-assisted extraction of polysaccharides from Camptotheca acuminata fruits and its antitumor activity[J]. Carbohydrate Polymers,2018,206:557−564. [45] 吕青青, 陈寒青. 小麦麸皮硒化多糖的肝保护活性研究[J]. 合肥工业大学学报(自然科学版),2022,45(5):694−699. [LÜ Q Q, CHEN H Q. Hepatoprotective activities of wheat bran Se-polysaccharide[J]. Journal of Hefei University of Technology (Natural Science),2022,45(5):694−699. doi: 10.3969/j.issn.1003-5060.2022.05.020LV Q Q, CHEN H Q. Hepatoprotective activities of wheat bran Se-polysaccharide [J]. Journal of Hefei University of Technology(Natural Science), 2022, 45(5): 694-699. doi: 10.3969/j.issn.1003-5060.2022.05.020 [46] ZOETE V, VEZIN H, BAILLY F, et al. 4-Mercaptoimidazoles derived from the naturally occurring antioxidant ovothiols 2. Computational and experimental approach of the radical scavenging mechanism[J]. Free Radical Research,2000,32(6):525−533. doi: 10.1080/10715760000300531 [47] ESPIN J C, RIVAS C S, WICHERS H J, et al. Anthocyanin-based natural colorants: a new source of antiradical activity for foodstuff[J]. Journal of Agricultural and Food Chemistry,2000,48(5):1588−1592. doi: 10.1021/jf9911390 [48] HUANG S Q, DING S, FAN L. Antioxidant activities of five polysaccharides from Inonotus obliquus[J]. International Journal of Biological Macromolecules,2012,50(5):1183−1187. doi: 10.1016/j.ijbiomac.2012.03.019 [49] ZHAO Z Y, ZHANG Q, LI Y F, et al. Optimization of ultrasound extraction of Alisma orientalis polysaccharides by response surface methodology and their antioxidant activities[J]. Carbohydrate Polymers,2015,119:101−109. doi: 10.1016/j.carbpol.2014.11.052 [50] MALUNGA L N, IZYDORCZYK M, BETA T. Effect of water-extractable arabinoxylans from wheat aleurone and bran on lipid peroxidation and factors influencing their antioxidant capacity[J]. Bioactive Carbohydrates and Dietary Fibre,2017,10:20−26. doi: 10.1016/j.bcdf.2017.05.001 [51] HU S Q, LI Y R, NIE C L, et al. Structure and pro-inflammatory activities of bran polysaccharides from a novel wheat kernel[J]. Journal of Food Biochemistry,2021,46(1):14008. [52] 刘秀英, 刘力, 张俊. 高纤维营养膳食对糖尿病血、尿糖与脂代谢的影响[J]. 中国慢性病预防与控制,2000(5):235. [LIU X Y, LIU L, ZHANG J. Effects of high fiber diet on blood, urine glucose and lipid metabolism in diabetes[J]. Chinese Journal of Prevention and Control of Chronic Diseases,2000(5):235. doi: 10.3969/j.issn.1004-6194.2000.05.022LIU X Y, LIU L, ZHANG J. Effects of high fiber diet on blood, urine glucose and lipid metabolism in diabetes[J]. Chinese Journal of Prevention and Control of Chronic Diseases, 2000, (5): 235. doi: 10.3969/j.issn.1004-6194.2000.05.022 [53] VOGEL B, GALLAHER D D, BUNZEL M. Influence of cross-linked arabinoxylans on the postprandial blood glucose response in rats[J]. Journal of Agricultural and Food Chemistry,2012,60(15):3847−3852. doi: 10.1021/jf203930a [54] 刘袆帆, 林诺怡, 成坚, 等. 微生物发酵法制备活性多糖的研究概述[J]. 食品与发酵工业,2021,47(3):281−287. [LIU H F, LIN N Y, CHENG J, et al. Advances in preparation of polysaccharides by microbial fermentation[J]. Food and Fermentation Industries,2021,47(3):281−287. doi: 10.13995/j.cnki.11-1802/ts.026004LIU H F, LIN N Y, CHENG J, et al. Advances in preparation of polysaccharides by microbial fermentation[J]. Food and Fermentation Industries, 2021, 47(3): 281-287. doi: 10.13995/j.cnki.11-1802/ts.026004 [55] 陈秋燕, 王瑞芳, 王园, 等. 基于斑马鱼模型评价发酵对麦麸多糖抗氧化活性的影响[J]. 中国粮油学报, 2022(12): 35-43.CHEN Q Y, WANG R F, WANG Y, et al. The effect of fermentation on antioxidant activity of wheat bran polysaccharide was evaluated using zebrafish model[J]. Journal of the Chinese Cereals and Oils Association, 2022(12): 35-43. [56] 王启龙. 基于免疫亲和色谱的中药多糖活性筛选与构效关系研究[D]. 镇江: 江苏大学, 2019WANG Q L. Activity screening and structure-activity relationship research of polysaccharides from traditional Chinese medicine via immunoaffinity chromatography[D]. Zhenjiang: Jiangsu University, 2019. [57] 杨玉洁, 刘静宜, 谭艳, 等. 多糖降血糖活性构效关系及作用机制研究进展[J]. 食品科学,2021,42(23):355−363. [YANG Y J, LIU J Y, TAN Y, et al. Progress in understanding the structure-activity relationship and hypoglycemic mechanism of polysaccharides[J]. Food Science,2021,42(23):355−363. doi: 10.7506/spkx1002-6630-20200818-244YANG Y J, LIU J Y, TAN Y, et al. Progress in understanding the structure-activity relationship and hypoglycemic mechanism of polysaccharides[J]. Food Science, 2021, 42(23): 355-363. doi: 10.7506/spkx1002-6630-20200818-244 [58] PRABHU A A, GARG Y, CHITYALA S, et al. Improvement of phytonutrients and antioxidant properties of wheat bran by yeast fermentation[J]. Current Nutrition & Food Science,2016,12(4):249−255. [59] 田玉荣. 不同加工工艺条件下黑小麦麸皮戊聚糖的理化性质及益生活性研究[D]. 太原: 山西大学, 2021TIAN Y R. Study on the physicochemical properties and prebiotic activity of black wheat bran pentosan under different processing conditions[D]. Taiyuan: Shanxi University, 2021. -