• 食品科学与工程领域高质量科技期刊分级目录第一方阵T1
  • Scopus
  • FSTA
  • 北大核心期刊
  • 中国核心学术期刊RCCSE
  • DOAJ
  • JST China
  • 中国精品科技期刊
  • 中国农业核心期刊
  • CA
  • WJCI
  • 中国科技核心期刊CSTPCD
  • 中国生物医学SinoMed
中国精品科技期刊2020 食品青年科学家峰会

基于毛细管凝胶电泳与DNA条形码技术鉴别可食用动物内脏掺假方法的研究

励炯 吴琼 江海 扈明洁 金朦娜 闫金花

励炯,吴琼,江海,等. 基于毛细管凝胶电泳与DNA条形码技术鉴别可食用动物内脏掺假方法的研究[J]. 新宝登录入口(中国)有限公司,2023,44(15):332−339. doi:  10.13386/j.issn1002-0306.2022090211
引用本文: 励炯,吴琼,江海,等. 基于毛细管凝胶电泳与DNA条形码技术鉴别可食用动物内脏掺假方法的研究[J]. 新宝登录入口(中国)有限公司,2023,44(15):332−339. doi:  10.13386/j.issn1002-0306.2022090211
LI Jiong, WU Qiong, JIANG Hai, et al. Identification of Adulterated Animal-derived Ingredients in Edible Animal Viscera Based on Capillary Gel Electrophoresis and DNA Barcoding Techniques[J]. Science and Technology of Food Industry, 2023, 44(15): 332−339. (in Chinese with English abstract). doi:  10.13386/j.issn1002-0306.2022090211
Citation: LI Jiong, WU Qiong, JIANG Hai, et al. Identification of Adulterated Animal-derived Ingredients in Edible Animal Viscera Based on Capillary Gel Electrophoresis and DNA Barcoding Techniques[J]. Science and Technology of Food Industry, 2023, 44(15): 332−339. (in Chinese with English abstract). doi:  10.13386/j.issn1002-0306.2022090211

基于毛细管凝胶电泳与DNA条形码技术鉴别可食用动物内脏掺假方法的研究

doi: 10.13386/j.issn1002-0306.2022090211
基金项目: 国家市场监督管理总局科技计划项目(2021MK141)。
详细信息
    作者简介:

    励炯(1983−),男,硕士,副主任技师,研究方向:食品科学与安全,E-mail:jokelee2@126.com

  • 中图分类号: TS251.7

Identification of Adulterated Animal-derived Ingredients in Edible Animal Viscera Based on Capillary Gel Electrophoresis and DNA Barcoding Techniques

  • 摘要: 建立并优化了使用基于DNA条形码技术对可食用内脏制品中包括猪、牛、羊、鸡、鸭、鹅、兔7种常见动物源成分进行掺假鉴别的方法。用生理盐水清洗和真空冷冻干燥预处理后的内脏样品,经DNA提取扩增后,扩增产物经毛细管凝胶电泳分析系统进行确认,克隆测序结果提交本地数据库Viscera进行比对,同时筛选出适合7种动物源内脏DNA扩增的通用引物COI-A,优化DNA模板量和退火温度,验证考察了19个可食用内脏掺假模型的最低掺假比例。7种动物的5类内脏的PCR扩增效率均为100%,最佳的DNA模板量和退火温度为2 μL和53 ℃,掺假成分的最低检出比例为5%。本方法灵敏度高,可靠性好,可作为常见可食用动物内脏掺假的有效检测方法。
  • 图  1  不同前处理方式(A)和不同取样量(B)对鸭肠掺假模型(含10%鸡源性成分)中的掺假成分检出率的影响

    Figure  1.  Effect of different pretreatment methods (A) and sampling volumes (B) on the detection rate of adulterated ingredients in the duck sausage adulteration model (containing 10% chicken-derived ingredients)

    注:***代表P<0.001;****代表P<0.0001。

    图  2  不同DNA提取方法对可食用动物内脏DNA纯度的总体影响统计

    Figure  2.  Statistics on the overall effect of different DNA extraction methods on the purity of DNA from edible visceral

    图  3  7种动物源的可食用内脏(肝)DNA条形码的PCR扩增电泳图

    Figure  3.  Electrophoresis images of DNA barcoding fragments amplified by PCR from liver of 7 anmials

    注:M:Marker(15~1500 bp);1:猪源性;2:牛源性;3:羊源性;4:鸭源性;5:鸡源性;6:鹅源性; 7:兔源性。

    图  4  DNA模板量与不同退火温度对7种动物源的可食用内脏DNA条形码的PCR扩增效率的影响

    Figure  4.  Effect of DNA template amount and different annealing temperatures on the PCR amplification efficiency of edible visceral DNA barcodes from seven animal source

    表  1  基因引物序列

    Table  1.   Primer sequence of genes

    引物上游引物(F-Primer 5′-3′)下游引物(R-Primer 5′-3′)
    COI-A[27]TGTAAAACGACGGCCAGTTCTCAACCAACCACAARGAYATYGG CAGGAAACAGCTATGACTAGACTTCTGGGTGGCCRAARAAYCA
    COI-B[26]TGTAAAACGACGGCCAGTICTCAACCAACCACAAAGACATIGGCAGGAAACAGCTATGACTAGACTTCTGGGTGGCCAAAGAATCA
    COI-C[26]TGTAAAACGACGGCCAGTTCTCAACCAACCAIAAIGALATIGGCAGGAAACAGCTATGACTAGACTTCTGGGTGICCIAAIAAICA
    下载: 导出CSV

    表  2  7种动物源内脏的DNA条形码检测结果

    Table  2.   DNA barcoding results for 7 samples found to contain one species

    序号(NO.)内脏来源基因相似度物种匹配结果
    199%Sus scrofa(野猪)
    298%Bos primigenius(原始牛)
    399%Capra hircus(山羊)
    498%Anas platyrhynchos(绿头鸭)
    5100%Gallus gallus(普通家鸡)
    698%Anser(鹅属)
    7100%Oryctolagus cuniculus(家兔)
    下载: 导出CSV

    表  3  可食用内脏掺假模型

    Table  3.   Animal viscera adulteration model

    模型编号高经济价值内脏掺假内脏灵敏度(%)
    1牛肝猪肝5
    2羊肝猪肝5
    3兔肝猪肝5
    4鹅肝
    鹅肝
    鸭肝5
    5鸡肝5
    6牛胃猪胃5
    7羊胃猪胃5
    8鹅胃
    鹅胃
    鸡胃5
    9鸭胃5
    10牛肠猪肠5
    11羊肠猪肠5
    12鹅肠
    鹅肠
    鸡肠5
    13鸭肠5
    14牛肾猪肾5
    15羊肾猪肾5
    16鹅肾
    鹅肾
    鸡肾5
    17鸭肾5
    18牛肺猪肺5
    19羊肺猪肺5
    下载: 导出CSV

    表  4  实际样品检测结果

    Table  4.   Actual sample test results

    序号
    (NO.)
    样品名称DNA条形
    码鉴定结果
    基因相似
    度(%)
    判断
    结果
    实时荧光定
    性PCR法结果
    1牛肝a牛源性成分98符合牛源性成分
    2牛肝b牛源性成分98符合牛源性成分
    3牛肝c牛源性成分98符合牛源性成分
    4羊肝a羊源性成分99符合羊源性成分
    5羊肝b羊源性成分99符合羊源性成分
    6鹅肝a鹅源性成分99符合鹅源性成分
    7鹅肝b鹅源性成分99符合鹅源性成分
    8鹅肝c鹅源性成分99符合鹅源性成分
    9鹅肝d鸭源性成分98掺假鸭源性成分
    10鹅肝e鹅源性成分99符合鹅源性成分
    11牛百叶a牛源性成分98符合牛源性成分
    12牛百叶b牛源性成分98符合牛源性成分
    13牛百叶c牛源性成分98符合牛源性成分
    14牛百叶d猪源性成分97掺假猪源性成分
    15牛百叶e牛源性成分98符合牛源性成分
    16牛百叶f猪源性成分97掺假猪源性成分
    17牛肠a牛源性成分98符合牛源性成分
    18牛肠b牛源性成分98符合牛源性成分
    19鹅肠a鹅源性成分99符合鹅源性成分
    20鹅肠b鹅源性成分99符合鹅源性成分
    21鹅肠c鸭源性成分99掺假鸭源性成分
    22鹅肠d鹅源性成分99符合鹅源性成分
    23牛肺牛源性成分98符合牛源性成分
    24羊肺a羊源性成分99符合羊源性成分
    25羊肺b羊源性成分99符合羊源性成分
    下载: 导出CSV
  • [1] 王学平. 畜禽产品加工的综合利用发展趋势[J]. 肉类研究,2008(11):11−14. [WANG X P. The comprehensive utilization of the livestock and poultry products processing[J]. Meat Research,2008(11):11−14. doi:  10.3969/j.issn.1001-8123.2008.11.006

    WANG X P. The comprehensive utilization of the livestock and poultry products processing[J]. Meat Research, 2008, (11): 11-14. doi:  10.3969/j.issn.1001-8123.2008.11.006
    [2] 王晓雄. 吃动物内脏的好与坏[J]. 安全与健康,2017(12):51. [WANG X X. The benefits and disadvantages of eating animal viscera[J]. Safety & Health,2017(12):51.

    WANG X X. The benefits and disadvantages of eating animal viscera[J]. Safety & Health, 2017, (12): 51.
    [3] 张文文, 梅娜娜, 钤莉妍, 等. 驴肝与猪肝、鸡肝和鹅肝之间的营养成分比较[J]. 食品安全质量检测学报,2018,9(16):4435−4439. [ZHANG W W, MEI N N, QIAN L Y, et al. Comparison of nutrients between donkey liver and pig liver, chicken liver and goose liver[J]. Journal of Food Safety & Quality,2018,9(16):4435−4439. doi:  10.3969/j.issn.2095-0381.2018.16.041

    ZHANG W W, MEI N N, QIAN L Y, et al. Comparison of nutrients between donkey liver and pig liver, chicken liver and goose liver [J]. Journal of Food Safety & Quality, 2018, 9(16): 4435-4439. doi:  10.3969/j.issn.2095-0381.2018.16.041
    [4] 李珮斯, 苏永祺, 郭新东, 等. 微波消解-电感耦合等离子体质谱法测定动物内脏中金属元素含量[J]. 安徽农业科学,2013,41(21):8915−8917. [LI P S, SU Y Q, GUO X D, et al. Content determination of metal elements in animal viscera by microwave digestion-inductively coupled plasma mass spectrometry[J]. Journal of Anhui Agricultural Sciences,2013,41(21):8915−8917. doi:  10.3969/j.issn.0517-6611.2013.21.037

    LI P S, SU Y Q, GUO X D, et al. Content determination of metal elements in animal viscera by microwave digestion-inductively coupled plasma mass spectrometry [J]. Journal of Anhui Agricultural Sciences, 2013, 41(21): 8915-8917. doi:  10.3969/j.issn.0517-6611.2013.21.037
    [5] 林竹光, 孙若男, 张莉莉, 等. 气相色谱-质谱法同时测定动物内脏中的14种酞酸酯类环境激素残留[J]. 色谱,2008(3):280−284. [LIN Z G, SUN R N, ZHANG L L, et al. Simultaneous determination of 14 phthalate ester residues in animal innards by gas chromatography-mass spectrometry with electron impact ionization[J]. Chinese Journal of Chromatography,2008(3):280−284. doi:  10.3321/j.issn:1000-8713.2008.03.003

    LIN Z G, SUN R N, ZHANG L L, et al. Simultaneous determination of 14 phthalate ester residues in animal innards by gas chromatography-mass spectrometry with electron impact ionization [J]. Chinese Journal of Chromatography, 2008, (3): 280-284. doi:  10.3321/j.issn:1000-8713.2008.03.003
    [6] 魏法山, 巩阿娜, 谢文佳, 等. 我国畜禽内脏食用安全指标检测分析[J]. 食品安全质量检测学报,2017,8(9):3667−3673. [WEI F S, GONG A N, XIE W J, et al. Detection and analysis of edible safety of livestock and poultry viscera in China[J]. Journal of Food Safety & Quality,2017,8(9):3667−3673. doi:  10.3969/j.issn.2095-0381.2017.09.066

    WEI F S, GONG A N, XIE W J, et al. Detection and analysis of edible safety of livestock and poultry viscera in China [J]. Journal of Food Safety & Quality, 2017, 8(9): 3667-3673. doi:  10.3969/j.issn.2095-0381.2017.09.066
    [7] ERBAN T, SHCHERBACHENKO E, TALACKO P, et al. A single honey proteome dataset for identifying adulteration by foreign amylases and mining various protein markers natural to honey[J]. Journal of Proteomics,2021,239:104157. doi:  10.1016/j.jprot.2021.104157
    [8] KRITIKOU A S, AALIZADEH R, DAMALAS D E, et al. MALDI-TOF-MS integrated workflow for food authenticity investigations: An untargeted protein-based approach for rapid detection of PDO feta cheese adulteration[J]. Food Chemistry,2022,370:131057. doi:  10.1016/j.foodchem.2021.131057
    [9] MONTOWSKA M, FORNAL E. Absolute quantification of targeted meat and allergenic protein additive peptide markers in meat products[J]. Food Chemistry,2019,274:857−864. doi:  10.1016/j.foodchem.2018.08.131
    [10] LECRENIER M C, MARIEN A, VEYS P, et al. Inter-laboratory study on the detection of bovine processed animal protein in feed by LC-MS/MS-based proteomics[J]. Food Control,2021,125:107944. doi:  10.1016/j.foodcont.2021.107944
    [11] FORNAL E, MONTOWSKA M. Species-specific peptide-based liquid chromatography–mass spectrometry monitoring of three poultry species in processed meat products[J]. Food Chemistry,2019,285:489−498.
    [12] HAO X K, FU L L, SHAO L L, et al. Quantification of major milk proteins using ultra-performance liquid chromatography tandem triple quadrupole mass spectrometry and its application in milk authenticity analysis[J]. Food Control,2022,131:108455. doi:  10.1016/j.foodcont.2021.108455
    [13] COTTENET G, BLANCPAIN C, CHUAH P F, et al. Evaluation and application of a next generation sequencing approach for meat species identification[J]. Food Control,2020,110:107003. doi:  10.1016/j.foodcont.2019.107003
    [14] GALAL-KHALLAF A. Multiplex PCR and 12S rRNA gene sequencing for detection of meat adulteration: A case study in the Egyptian markets[J]. Gene,2021,764:145062. doi:  10.1016/j.gene.2020.145062
    [15] WANG N, XING R R, ZHOU M Y, et al. Application of DNA barcoding and metabarcoding for species identification in salmon products[J]. Food Additives & Contaminants,2021,38(5):754−768.
    [16] CAOBY H, ZHENG K Z, JIANG J F, et al. A novel method to detect meat adulteration by recombinase polymerase amplification and SYBR green I[J]. Food Chemistry,2018,266:73−78. doi:  10.1016/j.foodchem.2018.05.115
    [17] KANG T S, TANAKA T. Comparison of quantitative methods based on SYBR Green real-time qPCR to estimate pork meat adulteration in processed beef products[J]. Food Chemistry,2018,269:549−558. doi:  10.1016/j.foodchem.2018.06.141
    [18] QUINTO C A, TINOCO R, HELLBERG R S. DNA barcoding reveals mislabeling of game meat species on the U. S. commercial market[J]. Food Control,2016,59:386−392. doi:  10.1016/j.foodcont.2015.05.043
    [19] ZIA Q, ALAWAMI M, MOKHTAR N F, et al. Current analytical methods for porcine identification in meat and meat products[J]. Food Chemistry,2020,324:126664. doi:  10.1016/j.foodchem.2020.126664
    [20] XING R R, HU R R, HAN J X, et al. DNA barcoding and mini-barcoding in authenticating processed animal-derived food: A case study involving the Chinese market[J]. Food Chemistry,2020,309:125653. doi:  10.1016/j.foodchem.2019.125653
    [21] AHMED N, SANGALE D, TIKNAIK A, et al. Authentication of origin of meat species processed under various Indian culinary procedures using DNA barcoding[J]. Food Control, 2018, 90: 259−265.
    [22] KANE D E, HELLBERG R S. Identification of species in ground meat products sold on the U. S. commercial market using DNA-based methods[J]. Food Control,2016,59:158−163. doi:  10.1016/j.foodcont.2015.05.020
    [23] BARAKAT H, EI-GARHY H A S, MOUSTAFA M M A. Detection of pork adulteration in processed meat by species-specific PCR-QIAxcel procedure based on D-loop and cytb genes[J]. Applied Microbiology and Biotechnology,2014,98:9805−9816. doi:  10.1007/s00253-014-6084-x
    [24] SEN F, UNCU A O, UNCU A T, et al. The trnL (UAA)-trnF (GAA) intergenic spacer is a robust marker of green pea (Pisum sativum L.) adulteration in economically valuable pistachio nuts (Pistacia vera L.)[J]. Journal of the Science of Food and Agriculture,2020,100(7):3056−3061. doi:  10.1002/jsfa.10336
    [25] ELSAYED M S A E. A first insight into the application of high discriminatory MIRU-VNTR typing using QIAxcel technology for genotyping Mycobacterium bovis isolated from the Delta area in Egypt[J]. Infection, Genetics and Evolution,2019,71:211−214. doi:  10.1016/j.meegid.2019.04.004
    [26] HAJIBABAEI M, SINGER G A C, HEBERT P D N, et al. DNA barcoding: How it complements taxonomy, molecular phylogenetics and population genetics[J]. Trends in Genetics,2007,23(4):167−172. doi:  10.1016/j.tig.2007.02.001
    [27] IVANOVA N V, DEWAARD J R, HEBERT P D N. An inexpensive automation-friendly protocol for recovering high-quality DNA[J]. Molecular Ecology Notes,2006,6:998−1002. doi:  10.1111/j.1471-8286.2006.01428.x
    [28] RAO M S, CHAKRABORTY G, MURTHY K S. Market drivers and discovering technologies in meat species identification[J]. Food Analytical Methods,2019,12:2416−2429. doi:  10.1007/s12161-019-01591-8
    [29] KUMAR A, RODRIGUES V, BASKARAN K, et al. DNA barcode based species-specific marker for Ocimum tenuiflorum and its applicability in quantification of adulteration in herbal formulations using qPCR[J]. Journal of Herbal Medicine,2020,23:100376. doi:  10.1016/j.hermed.2020.100376
    [30] DAI Z Y, QIAO J, YANG S R, et al. Species authentication of common meat based on PCR analysis of the mitochondrial COI Gene[J]. Applied Biochemistry and Biotechnology,2015,176:1770−1780. doi:  10.1007/s12010-015-1715-y
    [31] LIU W W, TAO J, XUE M, et al. A multiplex PCR method mediated by universal primers for the identification of eight meat ingredients in food products[J]. European Food Research and Technology,2019,245:2385−2392. doi:  10.1007/s00217-019-03350-9
    [32] DUNHAM-CHEATHAM S M, KLINGLER K B, ESTRADA M V, et al. Using a next-generation sequencing approach to DNA metabarcoding for identification of adulteration and potential sources of mercury in commercial cat and dog foods[J]. Science of The Total Environment,2021,778:146102. doi:  10.1016/j.scitotenv.2021.146102
    [33] COTTENET G, SONNARD V, BLANCPAIN C, et al. A DNA macro-array to simultaneously identify 32 meat species in food samples[J]. Food Control,2016,67:135−143. doi:  10.1016/j.foodcont.2016.02.042
    [34] SWETHA V P, SHEEJA T E, SASIKUMAR B. DNA barcoding as an authentication tool for food and agricultural commodities[J]. Current Trends in Biotechnology & Pharmacy,2016,10(4):384−402.
    [35] HELLBERG R S, HERNANDEZ B C, HERNANDEZ E L. Identification of meat and poultry species in food products using DNA barcoding[J]. Food Controll,2017,80:23−28. doi:  10.1016/j.foodcont.2017.04.025
    [36] 励炯, 吴琼, 扈明洁, 等. 基于细胞色素C氧化酶亚基Ⅰ序列的DNA微条形码技术鉴别11种生鲜肉制品掺假的研究[J]. 浙江大学学报(农业与生命科学版),2021,47(1):52−59. [LI J, WU Q, HU M J, et al. Identification of adulteration in 11 fresh meat products by DNA mini-barcoding methods based on cytochrome C oxidase subunit Ⅰ (COⅠ) sequence[J]. Journal of Zhejiang University (Agriculture and Life Sciences),2021,47(1):52−59. doi:  10.3785/j.issn.1008-9209.2020.04.291

    LI J, WU Q, HU M J, et al. Identification of adulteration in 11 fresh meat products by DNA mini-barcoding methods based on cytochrome C oxidase subunit Ⅰ (COⅠ) sequence[J]. Journal of Zhejiang University(Agriculture and Life Sciences), 2021, 47(1): 52-59. doi:  10.3785/j.issn.1008-9209.2020.04.291
    [37] 郜星晨, 姜伟. 三峡库区常见鱼类DNA条形码本地BLAST数据库的构建和应用[J]. 基因组学与应用生物学,2021,40(5):1952−1964. [HAO X C, JIANG W. The construction and application of BLAST database of DNA barcode for common fish in the three gorges reservoir[J]. Genomics and Applied Biology,2021,40(5):1952−1964. doi:  10.13417/j.gab.040.001952

    HAO X C, JIANG W. The construction and application of BLAST database of DNA barcode for common fish in the three gorges reservoir [J]. Genomics and Applied Biology, 2021, 40(5): 1952-1964. doi:  10.13417/j.gab.040.001952
  • 加载中
图(4) / 表(4)
计量
  • 文章访问数:  9
  • HTML全文浏览量:  9
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-09-22
  • 网络出版日期:  2023-06-19

目录

    /

    返回文章
    返回