Effect of Methyl Jasmonate Treatment on Phenylpropanoid Pathway in Fresh-cut Melon during Storage
-
摘要: 茉莉酸甲酯(methyl jasmonate,MeJA)是一种天然存在的内源物质和信号分子,在植物胁迫应激反应和生长发育过程中起到调节作用。以“西州蜜-17”甜瓜为试材,采用100 μmol/L MeJA 20 ℃熏蒸20 h,研究其对鲜切甜瓜贮藏期间总酚含量和苯丙烷代谢途径关键酶活性和基因表达水平的影响。结果表明:切分前MeJA处理能够显著提高贮藏期间鲜切甜瓜总酚含量,增加苯丙氨酸解氨酶(phenylalanine ammonia-lyase, PAL)、肉桂酸4-羟化酶(cinnamate 4-hydroxylase,C4H)和4-香豆酸-CoA连接酶(4-coumarate: CoA ligase,4CL)活性,同时还发现MeJA处理提高了贮藏期间鲜切甜瓜CmPAL1/2/3、CmPAL5-9、CmC4H1/2/4和Cm4CL1/2的表达量(P<0.05)。由此表明,切分前MeJA处理能提高贮藏期间鲜切甜瓜苯丙烷代谢的水平,诱导酚类物质的积累。Abstract: Methyl jasmonate (MeJA), as a natural endogenous substance and a signal molecule, plays an important role in stress response and development in plant. The effect of MeJA fumigation (100 μmol/L, treatment at 20 ℃ for 20 h) on phenylpropanoid pathway during storage of 'Xizhoumi-17' melon was assayed in this study. Results showed that MeJA treatment significantly increased the total phenolics content, and enhanced the activities of phenylalanine ammonia-lyase (PAL), cinnamate 4-hydroxylase (C4H) and 4-coumarate: CoA ligase (4CL) (P<0.05). In addition, the expression of CmPAL1/2/3, CmPAL5-9, CmC4H1/2/4, and Cm4CL1/2 was also upregulated by MeJA treatment (P<0.05). Taken together, these results imply that MeJA treatment of fresh-cut melon would elevate the phenylpropanoid pathway and lead to the accumulation of phenolics.
-
Key words:
- fresh-cut /
- melon /
- methyl jasmonate /
- phenylpropanoid metabolic pathway /
- phenolic compounds
-
表 1 鲜切甜瓜苯丙烷代谢关键基因qRT-PCR引物序列
Table 1. Primer sequence of genes involved in phenylpropanoid pathway for qRT-PCR in fresh-cut melon
基因名称 基因编号 上游引物 下游引物 退火温度(℃) CmPAL1 MELO3C014223 AGGAACAAGGCTTTGCATGG GCTCGGGTTTCTACTTGCAG 56.1 CmPAL2 MELO3C014224 GCTGAGGCTGCCTTTAAACA CCTACAGCAGTGCCATTGAC 56.0 CmPAL3 MELO3C014226 GGGAAGCTCATGTTTGCTCA TGCTCAGCACTTTGAACATGA 55.5 CmPAL4 MELO3C014227 CTGCAAGCAGAAACCCAAGT GTTGCTCAGCACTTTGGACA 56.1 CmPAL5 MELO3C014228 CTGCAAGCAGAAACCCAAGT GTTGCTCAGCACTTTGGACA 56.1 CmPAL6 MELO3C014229 GCAGAGGGAGCTCATACGAT GTAGCCTTGAAGGAGGGTGT 56.1 CmPAL7 MELO3C017809 CTGGTGAAGCTTGGAGGAGA AGTGCCTTTACCCATGCTCT 56.0 CmPAL8 MELO3C017810 AGAGCATGGGTAAAGGCACT TTGTTGCGGAATGAGGCAAA 56.0 CmPAL9 MELO3C017811 CTGGTGAAGCTTGGAGGAGA AGTGCCTTTACCCATGCTCT 56.0 CmC4H1 MELO3C003932 GCCAAGTTCTCCATGCTCAG CATCCTCCCACATGCCACTA 56.2 CmC4H2 MELO3C019585 CAGAGCTAGTGAACCACCCA GGAGGTATGGGAGCTTGTGT 56.1 CmC4H3 MELO3C003933 GCTTGCTAGCCAAGTTCTCC TCTACGCATCTTACGCCAGT 56.0 CmC4H4 MELO3C003934 GGAATTCAGGCCAGAGAGGT TTCTTCTTCCAACGCCGAAC 56.1 Cm4CL1 MELO3C023493 TCCCGACATTCACATTCCCA CCGTAAGCTGAACGTCATGG 56.2 Cm4CL2 MELO3C024886 ATGAAGATCGTCGACACCGA TGCCTCCGGATTGTTGAGAT 56.1 β-actin MELO3C023264 CCGTTCTGTCCCTCTATGCT AGTAAGGTCACGACCAGCAA 56.0 -
[1] ORTIZ-DUARTE G, PÉREZ-CABRERA L E, ARTÉS-HERNÁNDEZ F, et al. Ag-Chitosan nanocomposites in edible coatings affect the quality of fresh-cut melon[J]. Postharvest Biology and Technology,2019,147:174−184. doi: 10.1016/j.postharvbio.2018.09.021 [2] 杨迎. 河北省设施甜瓜施氮的纳米碳溶胶调控技术研究[D]. 保定: 河北农业大学, 2020YANG Y. Study on nano-carbon sol control technology of nitrogen application in facilities melon in Hebei province[D]. Baoding: Hebei Agricultural University, 2020. [3] WU Z, TU M, YANG X, et al. Effect of cutting and storage temperature on sucrose and organic acids metabolism in postharvest melon fruit[J]. Postharvest Biology and Technology,2020,161:111081. doi: 10.1016/j.postharvbio.2019.111081 [4] HODGES D M, TOIVONEN P M A. Quality of fresh-cut fruits and vegetables as affected by exposure to abiotic stress[J]. Postharvest Biology and Technology,2008,48(2):155−162. doi: 10.1016/j.postharvbio.2007.10.016 [5] 罗海波, 姜丽, 余坚勇, 等. 鲜切果蔬的品质及贮藏保鲜技术研究进展[J]. 食品科学,2010,31(3):307−311. [LUO H B, JIANG L, YU J Y, et al. Current advances in preservation technology of fresh-cut fruits and vegetables[J]. Food Science,2010,31(3):307−311.LUO H B, JIANG L, YU J Y, et al. Current advances in preservation technology of fresh-cut fruits and vegetables[J]. Food Science, 2010, 31(3): 307-311. [6] 时月, 李玥, 王宇滨, 等. 丁香油-壳聚糖复合膜涂膜处理对鲜切甜瓜品质的影响[J]. 新宝登录入口(中国)有限公司,2021,42(24):278−283. [SHI Y, LI Y, WANG Y B, et al. Effect of clove oil-chitosan composite film coating on qualities of fresh-cut melon[J]. Science and Technology of Food Industry,2021,42(24):278−283. doi: 10.13386/j.issn1002-0306.2021030294SHI Y, LI Y, WANG Y B, et al. Effect of clove oil-chitosan composite film coating on qualities of fresh-cut melon[J]. Science and Technology of Food Industry, 2021, 42(24): 278−283. doi: 10.13386/j.issn1002-0306.2021030294 [7] LI X, LI M, WANG J, et al. Methyl jasmonate enhances wound-induced phenolic accumulation in pitaya fruit by regulating sugar content and energy status[J]. Postharvest Biology and Technology,2018,137:106−112. doi: 10.1016/j.postharvbio.2017.11.016 [8] 韩聪. 鲜切胡萝卜酚类物质合成积累及其调控机理研究[D]. 南京: 南京农业大学, 2017HAN C. Biosynthesis and accumulation of phenolic compounds in fresh-cut carrot and its possible regulatory mechanisms[D]. Nanjing: Nanjing Agricultural University, 2017. [9] BECERRA-MORENO A, BENAVIDES J, CISNEROS-ZEVALLOS L, et al. Plants as biofactories: glyphosate-induced production of shikimic acid and phenolic antioxidants in wounded carrot tissue[J]. Journal of Agricultural and Food Chemistry,2012,60(45):11378−11386. doi: 10.1021/jf303252v [10] LI X, LONG Q, GAO F, et al. Effect of cutting styles on quality and antioxidant activity in fresh-cut pitaya fruit[J]. Postharvest Biology and Technology,2017,124:1−7. doi: 10.1016/j.postharvbio.2016.09.009 [11] TORRES-CONTRERAS A M, NAIR V, CISNEROS-ZEVALLOS L, et al. Plants as biofactories: stress-induced production of chlorogenic acid isomers in potato tubers as affected by wounding intensity and storage time[J]. Industrial Crops and Products,2014,62:61−66. doi: 10.1016/j.indcrop.2014.08.018 [12] WASTERNACK C, HAUSE B. Jasmonates and octadecanoids: Signals in plant stress responses and development[M]. Progress in Nucleic Acid Research and Molecular Biology. Academic Press. 2002: 165-221. [13] 赵曼如, 胡文忠, 于皎雪, 等. 茉莉酸甲酯对果蔬抗性、抗氧化活性及品质影响的研究进展[J]. 新宝登录入口(中国)有限公司,2020,41(4):328−332. [ZHAO M R, HU W Z, YU J X, et al. Research progress on effects of methyl jasmonate on resistance, antioxidant activity and quality of fruits and vegetables[J]. Science and Technology of Food Industry,2020,41(4):328−332. doi: 10.13386/j.issn1002-0306.2020.04.056ZHAO M R, HU W Z, YU J X, et al. Research progress on effects of methyl jasmonate on resistance, antioxidant activity and quality of fruits and vegetables[J]. Science and Technology of Food Industry, 2020, 41(4): 328-332. doi: 10.13386/j.issn1002-0306.2020.04.056 [14] 李丽, 董银卯, 姚霞, 等. 茉莉酸甲酯对植物酚类成分代谢影响研究进展[J]. 中药材,2014,37(11):2109−2112. [LI L, DONG Y M, YAO X, et al. Research progress on effects of methyl jasmonate on metabolism of phenolic components in plants[J]. Journal of Chinese Medicinal Materials,2014,37(11):2109−2112.LI L, DONG Y M, YAO X, et al. Research progress on effects of methyl jasmonate on metabolism of phenolic components in plants. Journal of Chinese Medicinal Materials, 2014, 37(11): 2109-2112. [15] ERDAL A, BURHAN O. Effects of pre-harvest methyl jasmonate treatments on fruit quality of fuji apples during cold storage[J]. Uluslararası Tarım ve Yaban Hayatı Bilimleri Dergisi,2018,4:13−19. doi: 10.24180/ijaws.366304 [16] VAEZI S, ASGHARI M, FAROKHZAD A, et al. Exogenous methyl jasmonate enhances phytochemicals and delays senescence in harvested strawberries by modulating GABA shunt pathway[J]. Food Chemistry,2022,393:133418. doi: 10.1016/j.foodchem.2022.133418 [17] SARACOGLU O, OZTURK B, YILDIZ K, et al. Pre-harvest methyl jasmonate treatments delayed ripening and improved quality of sweet cherry fruits[J]. Scientia Horticulturae,2017,226:19−23. doi: 10.1016/j.scienta.2017.08.024 [18] WANG L, YANG X, DAI B, et al. 1-Methylcyclopropylene or methyl jasmonate-induced chilling tolerance in a stony hard peach cultivar[J]. Scientia Horticulturae,2022,304:111279. doi: 10.1016/j.scienta.2022.111279 [19] DESHI V, HOMA F, GHATAK A, et al. Exogenous methyl jasmonate modulates antioxidant activities and delays pericarp browning in litchi[J]. Physiology and Molecular Biology of Plants,2022,28(8):1561−1569. doi: 10.1007/s12298-022-01230-3 [20] 闫媛媛, 胡文忠, 姜爱丽, 等. 茉莉酸甲酯的信号分子作用及其在鲜切果蔬中应用的研究进展[J]. 新宝登录入口(中国)有限公司,2015,36(2):384−387,391. [YAN Y Y, HU W Z, JIANG A L, et al. Research progress on the role of methyl jasmonate as signal molecules and application in fresh-cut fruits and vegetables[J]. Science and Technology of Food Industry,2015,36(2):384−387,391.YAN Y Y, HU W Z, JIANG A L, et al. Research progress on the role of methyl jasmonate as signal molecules and application in fresh-cut fruits and vegetables[J]. Science and Technology of Food Industry, 2015, 36(2): 384-387, 391. [21] SLINKARD K, SINGLETON V. Total phenol analysis: Automation and comparison with manual methods[J]. American Journal of Enology and Viticulture,1977,28:49−55. doi: 10.5344/ajev.1977.28.1.49 [22] ZHOU F, JIANG A, FENG K, et al. Effect of methyl jasmonate on wound healing and resistance in fresh-cut potato cubes[J]. Postharvest Biology and Technology,2019,157:110958. doi: 10.1016/j.postharvbio.2019.110958 [23] WU Z, TU M, YANG X, et al. Effect of cutting on the reactive oxygen species accumulation and energy change in postharvest melon fruit during storage[J]. Scientia Horticulturae,2019,257:108752. doi: 10.1016/j.scienta.2019.108752 [24] 姜爱丽, 周福慧, 胡文忠, 等. 采后茉莉酸甲酯处理对蓝莓果实抗病性的影响[J]. 包装工程,2018,39(17):75−83. [JIANG A L, ZHOU F H, HU W Z, et al. Effect of postharvest methyl jasmonate treatment on blueberry fruit disease resistance during storage[J]. Packaging Engineering,2018,39(17):75−83.JIANG A L, ZHOU F H, HU W Z, et al. Effect of postharvest methyl jasmonate treatment on blueberry fruit disease resistance during storage[J]. Packaging Engineering, 2018, 39(17): 75-83. [25] 高红豆, 胡文忠, 管玉格, 等. 鲜切果蔬酚类物质的产生及其调控研究进展[J]. 食品工业,2020,41(4):212−216. [GAO H D, HU W Z, GUAN Y G, et al. The advances of the production and regulation in phenols of fresh-cut fruits and vegetables[J]. The Food Industry,2020,41(4):212−216.GAO H D, HU W Z, GUAN Y G, et al. The advances of the production and regulation in phenols of fresh-cut fruits and vegetables[J]. The Food Industry, 2020, 41(4): 212-216. [26] LI X, LI M, WANG L, et al. Methyl jasmonate primes defense responses against wounding stress and enhances phenolic accumulation in fresh-cut pitaya fruit[J]. Postharvest Biology and Technology,2018,145:101−107. doi: 10.1016/j.postharvbio.2018.07.001 [27] 闫媛媛, 胡文忠, 姜爱丽, 等. 茉莉酸甲酯和乙烯利处理对鲜切富士苹果抗氧化酶活力和苯丙烷代谢的影响[J]. 新宝登录入口(中国)有限公司,2015,36(16):324−327,32. [YAN Y Y, HU W Z, JIANG A L, et al. Effect of antioxidant enzyme activity and phenylpropanoid metabolism to jasmonic acid methyl ester (MeJA) of and ethephon treatments for fresh-cut apple[J]. Science and Technology of Food Industry,2015,36(16):324−327,32.YAN Y Y, HU W Z, JIANG A L, et al. Effect of antioxidant enzyme activity and phenylpropanoid metabolism to jasmonic acid methyl ester (MeJA) of and ethephon treatments for fresh-cut apple[J]. Science and Technology of Food Industry, 2015, 36(16): 324-327, 32. [28] SURJADINATA B B, JACOBO-VELÁZQUEZ D A, CISNEROS-ZEVALLOS L. Physiological role of reactive oxygen species, ethylene, and jasmonic acid on UV light induced phenolic biosynthesis in wounded carrot tissue[J]. Postharvest Biology and Technology,2021,172:111388. doi: 10.1016/j.postharvbio.2020.111388 [29] 董柏余, 汤洪敏, 姚秋萍, 等. 采后水杨酸处理对金刺梨果实活性氧和苯丙烷代谢的影响[J]. 新宝登录入口(中国)有限公司,2021,42(17):308−315. [DONG B Y, TANG H M, YAO Q P, et al. Effects of salicylic acid treatment on reactive oxygen species metabolism and phenylpropanoid pathway in rosa sterilis[J]. Science and Technology of Food Industry,2021,42(17):308−315.DONG B Y, TANG H M, YAO Q P, et al. Effects of salicylic acid treatment on reactive oxygen species metabolism and phenylpropanoid pathway in rosa sterilis[J]. Science and Technology of Food Industry, 2021, 42(17): 308−315. [30] WANG K, JIN P, HAN L, et al. Methyl jasmonate induces resistance against penicillium citrinum in chinese bayberry by priming of defense responses[J]. Postharvest Biology and Technology,2014,98:90−97. doi: 10.1016/j.postharvbio.2014.07.009 [31] MA L, ZHANG M, BHANDARI B, et al. Recent developments in novel shelf life extension technologies of fresh-cut fruits and vegetables[J]. Trends in Food Science and Technology,2017,64:23−38. doi: 10.1016/j.jpgs.2017.03.005 [32] 盘柳依, 赵显阳, 陈明, 等. 外源茉莉酸甲酯处理对采后猕猴桃果实品质和抗氧化酶活性的影响[J]. 食品与发酵工业,2019,45(9):190−196. [PAN L Y, ZHAO X Y, CHEN M, et al. Effects of exogenous methyl jasmonate on fruit qualities and antioxidases activities of postharvest kiwifruits[J]. Food and Fermentation Industries,2019,45(9):190−196.PAN L Y, ZHAO X Y, CHEN M, Et al. Effects of exogenous methyl jasmonate on fruit qualities and antioxidases activities of postharvest kiwifruits[J]. Food and Fermentation Industries, 2019, 45(9): 190-196. [33] 郝向阳, 孙雪丽, 王天池, 等. 植物PAL基因及其编码蛋白的特征与功能研究进展[J]. 热带作物学报,2018,39(7):1452−1461. [HAO X Y, SUN X L, WANG T C, et al. Characteristics and functions of plant phenylalanine ammonia lyase genes and the encoded proteins[J]. Chinese Journal of Tropical Crops,2018,39(7):1452−1461. doi: 10.3969/j.issn.1000-2561.2018.07.028HAO X Y, SUN X L, WANG T C, et al. Characteristics and functions of plant phenylalanine ammonia lyase genes and the encoded proteins[J]. Chinese Journal of Tropical Crops, 2018, 39(7): 1452 -1461. doi: 10.3969/j.issn.1000-2561.2018.07.028 [34] 吕思佳, 吴月燕, 贾永红, 等. 云锦杜鹃苯丙氨酸解氨酶基因的克隆及功能分析[J]. 生物工程学报,2022,38(1):374−385. [LÜ S J, WU Y Y, JIA Y H, et al. Cloning and functional analysis of the phenylalaninammo-nialyase gene from rhododendron fortunei[J]. Chinese Journal of Biotechnology,2022,38(1):374−385. doi: 10.13345/j.cjb.210325LÜ S J, WU Y Y, JIA Y H, et al. Cloning and functional analysis of the phenylalaninammo-nialyase gene from rhododendron fortunei[J]. Chinese Journal of Biotechnology, 2022, 38(1): 374-385. doi: 10.13345/j.cjb.210325 [35] 葛文佳, 辛建攀, 田如男. 植物苯丙烷代谢及其对重金属胁迫的响应研究进展[J]. 生物工程学报,2023,39(2):425−445. [GE W J, XIN J P, TIAN R N. Phenylpropanoid pathway in plants and its role in response to heavy metal stress: A review[J]. Chinese Journal of Biotechnology,2023,39(2):425−445. doi: 10.13345/j.cjb.220338GE W J, XIN J P, TIAN R N. Phenylpropanoid pathway in plants and its role in response to heavy metal stress: a review[J]. Chinese Journal of Biotechnology, 2023, 39(2): 425-445. doi: 10.13345/j.cjb.220338 [36] HUANG J, GU M, LAI Z, et al. Functional analysis of the arabidopsis pal gene family in plant growth, development, and response to environmental stress[J]. Plant Physiology,2010,153(4):1526−1538. doi: 10.1104/pp.110.157370 [37] 温晓丽. 外源磷酸钠对枣果实活性氧和苯丙烷代谢关键酶活性及酚类物质积累的影响[J]. 新宝登录入口(中国)有限公司,2022,43(17):381−386. [WEN X L. Effects of exogenous trisodium phosphate on activities of key enzymes of reactive oxygen species and phenylpropane metabolism and accumulation of phenolic compounds in jujube fruits[J]. Science and Technology of Food Industry,2022,43(17):381−386. doi: 10.13386/j.issn1002-0306.2021120242WEN X L. Effects of exogenous trisodium phosphate on activities of key enzymes of reactive oxygen species and phenylpropane metabolism and accumulation of phenolic compounds in jujube fruits[J]. Science and Technology of Food Industry, 2022, 43(17): 381−386. doi: 10.13386/j.issn1002-0306.2021120242 [38] 王玲平, 周生茂, 戴丹丽, 等. 植物酚类物质研究进展[J]. 浙江农业学报,2010,22(5):696−701. [WANG L P, ZHOU S M, DAI D L, et al. Progress in plant phenolic compounds[J]. Acta Agriculturae Zhejiangensis,2010,22(5):696−701. doi: 10.3969/j.issn.1004-1524.2010.05.030WANG L P, ZHOU S M, DAI D L, et al. Progress in plant phenolic compounds[J]. Acta Agriculturae Zhejiangensis, 2010, 22(5): 696-701. doi: 10.3969/j.issn.1004-1524.2010.05.030 [39] 尚军, 吴旺泽, 马永贵. 植物苯丙烷代谢途径[J]. 中国生物化学与分子生物学报,2022,38(11):1467−1476. [SHANG J, WU W Z, MA Y G. Phenylpropanoid metabolism pathway in plants[J]. Chinese Journal of Biochemistry and Molecular Biology,2022,38(11):1467−1476. doi: 10.13865/j.cnki.cjbmb.2022.03.1604SHANG J, WU W Z, MA Y G. Phenylpropanoid metabolism pathway in plants[J]. Chinese Journal of Biochemistry and Molecular Biology, 2022, 38(11): 1467-1476. doi: 10.13865/j.cnki.cjbmb.2022.03.1604 [40] DIXON R A, PAIVA N L. Stress-Induced phenylpropanoid metabolism[J]. The Plant Cell,1995,7(7):1085−1097. doi: 10.2307/3870059 [41] SCHILMILLER A L, STOUT J, WENG J K, et al. Mutations in the cinnamate 4-hydroxylase gene impact metabolism, growth and development in Arabidopsis[J]. The Plant Journal:for Cell and Molecular Biology,2009,60(5):771−782. doi: 10.1111/j.1365-313X.2009.03996.x [42] FAHRENDORF T, DIXON R A. Stress responses in alfalfa (medicago sativa l. ). xviii: molecular cloning and expression of the elicitor-inducible cinnamic acid 4-hydroxylase cytochrome p450[J]. Archives of Biochemistry and Biophysics,1993,305(2):509−515. doi: 10.1006/abbi.1993.1454 [43] CHENG S, YAN J, MENG X, et al. Characterization and expression patterns of a cinnamate-4-hydroxylase gene involved in lignin biosynthesis and in response to various stresses and hormonal treatments in Ginkgo biloba[J]. Acta Physiologiae Plantarum,2017,40(1):7. [44] DONG N Q, LIN H X. Contribution of phenylpropanoid metabolism to plant development and plant–environment interactions[J]. Journal of Integrative Plant Biology,2021,63(1):180−209. doi: 10.1111/jipb.13054 [45] EHLTING J, BÜTTNER D, WANG Q, et al. Three 4-coumarate: Coenzyme a ligases in arabidopsis thaliana represent two evolutionarily divergent classes in angiosperms[J]. The Plant Journal: for Cell and Molecular Biology,1999,19(1):9−20. doi: 10.1046/j.1365-313X.1999.00491.x [46] 汪开拓, 郑永华, 唐双双, 等. 茉莉酸甲酯对草莓果实采后腐烂、苯丙烷类代谢及抗氧化活性的影响[J]. 食品科技,2011,36(8):40−46. [WANG K T, ZHENG Y H, TANG S S, et al. Effects of methyl jasmonate (MeJA) on postharvest decay, phenylpropanoid metabolism and antioxidant activity in strawberry fruit[J]. Food Science and Technology,2011,36(8):40−46. doi: 10.13684/j.cnki.spkj.2011.08.005WANG K T, ZHENG Y H, TANG S S, et al. Effects of methyl jasmonate (MeJA) on postharvest decay, phenylpropanoid metabolism and antioxidant activity in strawberry fruit[J]. Food Science and Technology, 2011, 36(8): 40-46. doi: 10.13684/j.cnki.spkj.2011.08.005 -