• 食品科学与工程领域高质量科技期刊分级目录第一方阵T1
  • Scopus
  • FSTA
  • 北大核心期刊
  • 中国核心学术期刊RCCSE
  • DOAJ
  • JST China
  • 中国精品科技期刊
  • 中国农业核心期刊
  • CA
  • WJCI
  • 中国科技核心期刊CSTPCD
  • 中国生物医学SinoMed
中国精品科技期刊2020 食品青年科学家峰会

茉莉酸甲酯处理对鲜切甜瓜贮藏期间苯丙烷代谢的影响

李如新 郭媛媛 解春艳 贾云 张兵兵 罗海波 武张飞

李如新,郭媛媛,解春艳,等. 茉莉酸甲酯处理对鲜切甜瓜贮藏期间苯丙烷代谢的影响[J]. 新宝登录入口(中国)有限公司,2023,44(15):357−364. doi:  10.13386/j.issn1002-0306.2022100172
引用本文: 李如新,郭媛媛,解春艳,等. 茉莉酸甲酯处理对鲜切甜瓜贮藏期间苯丙烷代谢的影响[J]. 新宝登录入口(中国)有限公司,2023,44(15):357−364. doi:  10.13386/j.issn1002-0306.2022100172
LI Ruxin, GUO Yuanyuan, XIE Chunyan, et al. Effect of Methyl Jasmonate Treatment on Phenylpropanoid Pathway in Fresh-cut Melon during Storage[J]. Science and Technology of Food Industry, 2023, 44(15): 357−364. (in Chinese with English abstract). doi:  10.13386/j.issn1002-0306.2022100172
Citation: LI Ruxin, GUO Yuanyuan, XIE Chunyan, et al. Effect of Methyl Jasmonate Treatment on Phenylpropanoid Pathway in Fresh-cut Melon during Storage[J]. Science and Technology of Food Industry, 2023, 44(15): 357−364. (in Chinese with English abstract). doi:  10.13386/j.issn1002-0306.2022100172

茉莉酸甲酯处理对鲜切甜瓜贮藏期间苯丙烷代谢的影响

doi: 10.13386/j.issn1002-0306.2022100172
基金项目: 河北省重点研发计划项目(19227133D);河北省自然科学基金青年科学基金项目(C2022408017);河北省高等学校科学技术研究项目(QN2022174);新疆生产建设兵团第一师阿拉尔市科技计划项目(2022XX05);国家级大学生创新创业训练计划项目(202210100002);廊坊师范学院博士科研启动项目(XBQ202141)。
详细信息
    作者简介:

    李如新(2002−),女,本科,研究方向:果蔬加工与贮藏,E-mail:2978666939@qq.com

    通讯作者:

    武张飞(1990−),男,博士,讲师,研究方向:果蔬加工与贮藏,E-mail:wuzhangfeidsh@126.com

  • 中图分类号: TS255.3

Effect of Methyl Jasmonate Treatment on Phenylpropanoid Pathway in Fresh-cut Melon during Storage

  • 摘要: 茉莉酸甲酯(methyl jasmonate,MeJA)是一种天然存在的内源物质和信号分子,在植物胁迫应激反应和生长发育过程中起到调节作用。以“西州蜜-17”甜瓜为试材,采用100 μmol/L MeJA 20 ℃熏蒸20 h,研究其对鲜切甜瓜贮藏期间总酚含量和苯丙烷代谢途径关键酶活性和基因表达水平的影响。结果表明:切分前MeJA处理能够显著提高贮藏期间鲜切甜瓜总酚含量,增加苯丙氨酸解氨酶(phenylalanine ammonia-lyase, PAL)、肉桂酸4-羟化酶(cinnamate 4-hydroxylase,C4H)和4-香豆酸-CoA连接酶(4-coumarate: CoA ligase,4CL)活性,同时还发现MeJA处理提高了贮藏期间鲜切甜瓜CmPAL1/2/3CmPAL5-9CmC4H1/2/4Cm4CL1/2的表达量(P<0.05)。由此表明,切分前MeJA处理能提高贮藏期间鲜切甜瓜苯丙烷代谢的水平,诱导酚类物质的积累。
  • 图  1  MeJA处理对贮藏期间鲜切甜瓜总酚含量的影响

    Figure  1.  Effect of methyl jasmonate treatment on the content of total phenolic compounds in fresh-cut melon during storage

    注:图中不同小写字母表示相同贮藏时间MeJA处理与对照组差异显著(P<0.05);图2~图4同。

    图  3  MeJA处理对贮藏期间鲜切甜瓜PAL基因表达量的影响

    Figure  3.  Effect of methyl jasmonate treatment on the gene expression level of phenylalanine ammonia-lyase in fresh-cut melon during storage

    图  4  MeJA处理对贮藏期间鲜切甜瓜C4H和4CL基因表达量的影响

    Figure  4.  Effect of methyl jasmonate treatment on the gene expression level of cinnamate 4-hydroxylase and 4-coumarate: CoA ligase in fresh-cut melon during storage

    图  2  MeJA处理对贮藏期间鲜切甜瓜PAL、C4H和4CL活性的影响

    Figure  2.  Effect of methyl jasmonate treatment on the activity of phenylalanine ammonia-lyase (PAL), cinnamate 4-hydroxylase (C4H) and 4-coumarate: CoA ligase (4CL) in fresh-cut melon during storage

    表  1  鲜切甜瓜苯丙烷代谢关键基因qRT-PCR引物序列

    Table  1.   Primer sequence of genes involved in phenylpropanoid pathway for qRT-PCR in fresh-cut melon

    基因名称基因编号上游引物下游引物退火温度(℃)
    CmPAL1MELO3C014223AGGAACAAGGCTTTGCATGGGCTCGGGTTTCTACTTGCAG56.1
    CmPAL2MELO3C014224GCTGAGGCTGCCTTTAAACACCTACAGCAGTGCCATTGAC56.0
    CmPAL3MELO3C014226GGGAAGCTCATGTTTGCTCATGCTCAGCACTTTGAACATGA55.5
    CmPAL4MELO3C014227CTGCAAGCAGAAACCCAAGTGTTGCTCAGCACTTTGGACA56.1
    CmPAL5MELO3C014228CTGCAAGCAGAAACCCAAGTGTTGCTCAGCACTTTGGACA56.1
    CmPAL6MELO3C014229GCAGAGGGAGCTCATACGATGTAGCCTTGAAGGAGGGTGT56.1
    CmPAL7MELO3C017809CTGGTGAAGCTTGGAGGAGAAGTGCCTTTACCCATGCTCT56.0
    CmPAL8MELO3C017810AGAGCATGGGTAAAGGCACTTTGTTGCGGAATGAGGCAAA56.0
    CmPAL9MELO3C017811CTGGTGAAGCTTGGAGGAGAAGTGCCTTTACCCATGCTCT56.0
    CmC4H1MELO3C003932GCCAAGTTCTCCATGCTCAGCATCCTCCCACATGCCACTA56.2
    CmC4H2MELO3C019585CAGAGCTAGTGAACCACCCAGGAGGTATGGGAGCTTGTGT56.1
    CmC4H3MELO3C003933GCTTGCTAGCCAAGTTCTCCTCTACGCATCTTACGCCAGT56.0
    CmC4H4MELO3C003934GGAATTCAGGCCAGAGAGGTTTCTTCTTCCAACGCCGAAC56.1
    Cm4CL1MELO3C023493TCCCGACATTCACATTCCCACCGTAAGCTGAACGTCATGG56.2
    Cm4CL2MELO3C024886ATGAAGATCGTCGACACCGATGCCTCCGGATTGTTGAGAT56.1
    β-actinMELO3C023264CCGTTCTGTCCCTCTATGCTAGTAAGGTCACGACCAGCAA56.0
    下载: 导出CSV
  • [1] ORTIZ-DUARTE G, PÉREZ-CABRERA L E, ARTÉS-HERNÁNDEZ F, et al. Ag-Chitosan nanocomposites in edible coatings affect the quality of fresh-cut melon[J]. Postharvest Biology and Technology,2019,147:174−184. doi:  10.1016/j.postharvbio.2018.09.021
    [2] 杨迎. 河北省设施甜瓜施氮的纳米碳溶胶调控技术研究[D]. 保定: 河北农业大学, 2020

    YANG Y. Study on nano-carbon sol control technology of nitrogen application in facilities melon in Hebei province[D]. Baoding: Hebei Agricultural University, 2020.
    [3] WU Z, TU M, YANG X, et al. Effect of cutting and storage temperature on sucrose and organic acids metabolism in postharvest melon fruit[J]. Postharvest Biology and Technology,2020,161:111081. doi:  10.1016/j.postharvbio.2019.111081
    [4] HODGES D M, TOIVONEN P M A. Quality of fresh-cut fruits and vegetables as affected by exposure to abiotic stress[J]. Postharvest Biology and Technology,2008,48(2):155−162. doi:  10.1016/j.postharvbio.2007.10.016
    [5] 罗海波, 姜丽, 余坚勇, 等. 鲜切果蔬的品质及贮藏保鲜技术研究进展[J]. 食品科学,2010,31(3):307−311. [LUO H B, JIANG L, YU J Y, et al. Current advances in preservation technology of fresh-cut fruits and vegetables[J]. Food Science,2010,31(3):307−311.

    LUO H B, JIANG L, YU J Y, et al. Current advances in preservation technology of fresh-cut fruits and vegetables[J]. Food Science, 2010, 31(3): 307-311.
    [6] 时月, 李玥, 王宇滨, 等. 丁香油-壳聚糖复合膜涂膜处理对鲜切甜瓜品质的影响[J]. 新宝登录入口(中国)有限公司,2021,42(24):278−283. [SHI Y, LI Y, WANG Y B, et al. Effect of clove oil-chitosan composite film coating on qualities of fresh-cut melon[J]. Science and Technology of Food Industry,2021,42(24):278−283. doi:  10.13386/j.issn1002-0306.2021030294

    SHI Y, LI Y, WANG Y B, et al. Effect of clove oil-chitosan composite film coating on qualities of fresh-cut melon[J]. Science and Technology of Food Industry, 2021, 42(24): 278−283. doi:  10.13386/j.issn1002-0306.2021030294
    [7] LI X, LI M, WANG J, et al. Methyl jasmonate enhances wound-induced phenolic accumulation in pitaya fruit by regulating sugar content and energy status[J]. Postharvest Biology and Technology,2018,137:106−112. doi:  10.1016/j.postharvbio.2017.11.016
    [8] 韩聪. 鲜切胡萝卜酚类物质合成积累及其调控机理研究[D]. 南京: 南京农业大学, 2017

    HAN C. Biosynthesis and accumulation of phenolic compounds in fresh-cut carrot and its possible regulatory mechanisms[D]. Nanjing: Nanjing Agricultural University, 2017.
    [9] BECERRA-MORENO A, BENAVIDES J, CISNEROS-ZEVALLOS L, et al. Plants as biofactories: glyphosate-induced production of shikimic acid and phenolic antioxidants in wounded carrot tissue[J]. Journal of Agricultural and Food Chemistry,2012,60(45):11378−11386. doi:  10.1021/jf303252v
    [10] LI X, LONG Q, GAO F, et al. Effect of cutting styles on quality and antioxidant activity in fresh-cut pitaya fruit[J]. Postharvest Biology and Technology,2017,124:1−7. doi:  10.1016/j.postharvbio.2016.09.009
    [11] TORRES-CONTRERAS A M, NAIR V, CISNEROS-ZEVALLOS L, et al. Plants as biofactories: stress-induced production of chlorogenic acid isomers in potato tubers as affected by wounding intensity and storage time[J]. Industrial Crops and Products,2014,62:61−66. doi:  10.1016/j.indcrop.2014.08.018
    [12] WASTERNACK C, HAUSE B. Jasmonates and octadecanoids: Signals in plant stress responses and development[M]. Progress in Nucleic Acid Research and Molecular Biology. Academic Press. 2002: 165-221.
    [13] 赵曼如, 胡文忠, 于皎雪, 等. 茉莉酸甲酯对果蔬抗性、抗氧化活性及品质影响的研究进展[J]. 新宝登录入口(中国)有限公司,2020,41(4):328−332. [ZHAO M R, HU W Z, YU J X, et al. Research progress on effects of methyl jasmonate on resistance, antioxidant activity and quality of fruits and vegetables[J]. Science and Technology of Food Industry,2020,41(4):328−332. doi:  10.13386/j.issn1002-0306.2020.04.056

    ZHAO M R, HU W Z, YU J X, et al. Research progress on effects of methyl jasmonate on resistance, antioxidant activity and quality of fruits and vegetables[J]. Science and Technology of Food Industry, 2020, 41(4): 328-332. doi:  10.13386/j.issn1002-0306.2020.04.056
    [14] 李丽, 董银卯, 姚霞, 等. 茉莉酸甲酯对植物酚类成分代谢影响研究进展[J]. 中药材,2014,37(11):2109−2112. [LI L, DONG Y M, YAO X, et al. Research progress on effects of methyl jasmonate on metabolism of phenolic components in plants[J]. Journal of Chinese Medicinal Materials,2014,37(11):2109−2112.

    LI L, DONG Y M, YAO X, et al. Research progress on effects of methyl jasmonate on metabolism of phenolic components in plants. Journal of Chinese Medicinal Materials, 2014, 37(11): 2109-2112.
    [15] ERDAL A, BURHAN O. Effects of pre-harvest methyl jasmonate treatments on fruit quality of fuji apples during cold storage[J]. Uluslararası Tarım ve Yaban Hayatı Bilimleri Dergisi,2018,4:13−19. doi:  10.24180/ijaws.366304
    [16] VAEZI S, ASGHARI M, FAROKHZAD A, et al. Exogenous methyl jasmonate enhances phytochemicals and delays senescence in harvested strawberries by modulating GABA shunt pathway[J]. Food Chemistry,2022,393:133418. doi:  10.1016/j.foodchem.2022.133418
    [17] SARACOGLU O, OZTURK B, YILDIZ K, et al. Pre-harvest methyl jasmonate treatments delayed ripening and improved quality of sweet cherry fruits[J]. Scientia Horticulturae,2017,226:19−23. doi:  10.1016/j.scienta.2017.08.024
    [18] WANG L, YANG X, DAI B, et al. 1-Methylcyclopropylene or methyl jasmonate-induced chilling tolerance in a stony hard peach cultivar[J]. Scientia Horticulturae,2022,304:111279. doi:  10.1016/j.scienta.2022.111279
    [19] DESHI V, HOMA F, GHATAK A, et al. Exogenous methyl jasmonate modulates antioxidant activities and delays pericarp browning in litchi[J]. Physiology and Molecular Biology of Plants,2022,28(8):1561−1569. doi:  10.1007/s12298-022-01230-3
    [20] 闫媛媛, 胡文忠, 姜爱丽, 等. 茉莉酸甲酯的信号分子作用及其在鲜切果蔬中应用的研究进展[J]. 新宝登录入口(中国)有限公司,2015,36(2):384−387,391. [YAN Y Y, HU W Z, JIANG A L, et al. Research progress on the role of methyl jasmonate as signal molecules and application in fresh-cut fruits and vegetables[J]. Science and Technology of Food Industry,2015,36(2):384−387,391.

    YAN Y Y, HU W Z, JIANG A L, et al. Research progress on the role of methyl jasmonate as signal molecules and application in fresh-cut fruits and vegetables[J]. Science and Technology of Food Industry, 2015, 36(2): 384-387, 391.
    [21] SLINKARD K, SINGLETON V. Total phenol analysis: Automation and comparison with manual methods[J]. American Journal of Enology and Viticulture,1977,28:49−55. doi:  10.5344/ajev.1977.28.1.49
    [22] ZHOU F, JIANG A, FENG K, et al. Effect of methyl jasmonate on wound healing and resistance in fresh-cut potato cubes[J]. Postharvest Biology and Technology,2019,157:110958. doi:  10.1016/j.postharvbio.2019.110958
    [23] WU Z, TU M, YANG X, et al. Effect of cutting on the reactive oxygen species accumulation and energy change in postharvest melon fruit during storage[J]. Scientia Horticulturae,2019,257:108752. doi:  10.1016/j.scienta.2019.108752
    [24] 姜爱丽, 周福慧, 胡文忠, 等. 采后茉莉酸甲酯处理对蓝莓果实抗病性的影响[J]. 包装工程,2018,39(17):75−83. [JIANG A L, ZHOU F H, HU W Z, et al. Effect of postharvest methyl jasmonate treatment on blueberry fruit disease resistance during storage[J]. Packaging Engineering,2018,39(17):75−83.

    JIANG A L, ZHOU F H, HU W Z, et al. Effect of postharvest methyl jasmonate treatment on blueberry fruit disease resistance during storage[J]. Packaging Engineering, 2018, 39(17): 75-83.
    [25] 高红豆, 胡文忠, 管玉格, 等. 鲜切果蔬酚类物质的产生及其调控研究进展[J]. 食品工业,2020,41(4):212−216. [GAO H D, HU W Z, GUAN Y G, et al. The advances of the production and regulation in phenols of fresh-cut fruits and vegetables[J]. The Food Industry,2020,41(4):212−216.

    GAO H D, HU W Z, GUAN Y G, et al. The advances of the production and regulation in phenols of fresh-cut fruits and vegetables[J]. The Food Industry, 2020, 41(4): 212-216.
    [26] LI X, LI M, WANG L, et al. Methyl jasmonate primes defense responses against wounding stress and enhances phenolic accumulation in fresh-cut pitaya fruit[J]. Postharvest Biology and Technology,2018,145:101−107. doi:  10.1016/j.postharvbio.2018.07.001
    [27] 闫媛媛, 胡文忠, 姜爱丽, 等. 茉莉酸甲酯和乙烯利处理对鲜切富士苹果抗氧化酶活力和苯丙烷代谢的影响[J]. 新宝登录入口(中国)有限公司,2015,36(16):324−327,32. [YAN Y Y, HU W Z, JIANG A L, et al. Effect of antioxidant enzyme activity and phenylpropanoid metabolism to jasmonic acid methyl ester (MeJA) of and ethephon treatments for fresh-cut apple[J]. Science and Technology of Food Industry,2015,36(16):324−327,32.

    YAN Y Y, HU W Z, JIANG A L, et al. Effect of antioxidant enzyme activity and phenylpropanoid metabolism to jasmonic acid methyl ester (MeJA) of and ethephon treatments for fresh-cut apple[J]. Science and Technology of Food Industry, 2015, 36(16): 324-327, 32.
    [28] SURJADINATA B B, JACOBO-VELÁZQUEZ D A, CISNEROS-ZEVALLOS L. Physiological role of reactive oxygen species, ethylene, and jasmonic acid on UV light induced phenolic biosynthesis in wounded carrot tissue[J]. Postharvest Biology and Technology,2021,172:111388. doi:  10.1016/j.postharvbio.2020.111388
    [29] 董柏余, 汤洪敏, 姚秋萍, 等. 采后水杨酸处理对金刺梨果实活性氧和苯丙烷代谢的影响[J]. 新宝登录入口(中国)有限公司,2021,42(17):308−315. [DONG B Y, TANG H M, YAO Q P, et al. Effects of salicylic acid treatment on reactive oxygen species metabolism and phenylpropanoid pathway in rosa sterilis[J]. Science and Technology of Food Industry,2021,42(17):308−315.

    DONG B Y, TANG H M, YAO Q P, et al. Effects of salicylic acid treatment on reactive oxygen species metabolism and phenylpropanoid pathway in rosa sterilis[J]. Science and Technology of Food Industry, 2021, 42(17): 308−315.
    [30] WANG K, JIN P, HAN L, et al. Methyl jasmonate induces resistance against penicillium citrinum in chinese bayberry by priming of defense responses[J]. Postharvest Biology and Technology,2014,98:90−97. doi:  10.1016/j.postharvbio.2014.07.009
    [31] MA L, ZHANG M, BHANDARI B, et al. Recent developments in novel shelf life extension technologies of fresh-cut fruits and vegetables[J]. Trends in Food Science and Technology,2017,64:23−38. doi:  10.1016/j.jpgs.2017.03.005
    [32] 盘柳依, 赵显阳, 陈明, 等. 外源茉莉酸甲酯处理对采后猕猴桃果实品质和抗氧化酶活性的影响[J]. 食品与发酵工业,2019,45(9):190−196. [PAN L Y, ZHAO X Y, CHEN M, et al. Effects of exogenous methyl jasmonate on fruit qualities and antioxidases activities of postharvest kiwifruits[J]. Food and Fermentation Industries,2019,45(9):190−196.

    PAN L Y, ZHAO X Y, CHEN M, Et al. Effects of exogenous methyl jasmonate on fruit qualities and antioxidases activities of postharvest kiwifruits[J]. Food and Fermentation Industries, 2019, 45(9): 190-196.
    [33] 郝向阳, 孙雪丽, 王天池, 等. 植物PAL基因及其编码蛋白的特征与功能研究进展[J]. 热带作物学报,2018,39(7):1452−1461. [HAO X Y, SUN X L, WANG T C, et al. Characteristics and functions of plant phenylalanine ammonia lyase genes and the encoded proteins[J]. Chinese Journal of Tropical Crops,2018,39(7):1452−1461. doi:  10.3969/j.issn.1000-2561.2018.07.028

    HAO X Y, SUN X L, WANG T C, et al. Characteristics and functions of plant phenylalanine ammonia lyase genes and the encoded proteins[J]. Chinese Journal of Tropical Crops, 2018, 39(7): 1452 -1461. doi:  10.3969/j.issn.1000-2561.2018.07.028
    [34] 吕思佳, 吴月燕, 贾永红, 等. 云锦杜鹃苯丙氨酸解氨酶基因的克隆及功能分析[J]. 生物工程学报,2022,38(1):374−385. [LÜ S J, WU Y Y, JIA Y H, et al. Cloning and functional analysis of the phenylalaninammo-nialyase gene from rhododendron fortunei[J]. Chinese Journal of Biotechnology,2022,38(1):374−385. doi:  10.13345/j.cjb.210325

    LÜ S J, WU Y Y, JIA Y H, et al. Cloning and functional analysis of the phenylalaninammo-nialyase gene from rhododendron fortunei[J]. Chinese Journal of Biotechnology, 2022, 38(1): 374-385. doi:  10.13345/j.cjb.210325
    [35] 葛文佳, 辛建攀, 田如男. 植物苯丙烷代谢及其对重金属胁迫的响应研究进展[J]. 生物工程学报,2023,39(2):425−445. [GE W J, XIN J P, TIAN R N. Phenylpropanoid pathway in plants and its role in response to heavy metal stress: A review[J]. Chinese Journal of Biotechnology,2023,39(2):425−445. doi:  10.13345/j.cjb.220338

    GE W J, XIN J P, TIAN R N. Phenylpropanoid pathway in plants and its role in response to heavy metal stress: a review[J]. Chinese Journal of Biotechnology, 2023, 39(2): 425-445. doi:  10.13345/j.cjb.220338
    [36] HUANG J, GU M, LAI Z, et al. Functional analysis of the arabidopsis pal gene family in plant growth, development, and response to environmental stress[J]. Plant Physiology,2010,153(4):1526−1538. doi:  10.1104/pp.110.157370
    [37] 温晓丽. 外源磷酸钠对枣果实活性氧和苯丙烷代谢关键酶活性及酚类物质积累的影响[J]. 新宝登录入口(中国)有限公司,2022,43(17):381−386. [WEN X L. Effects of exogenous trisodium phosphate on activities of key enzymes of reactive oxygen species and phenylpropane metabolism and accumulation of phenolic compounds in jujube fruits[J]. Science and Technology of Food Industry,2022,43(17):381−386. doi:  10.13386/j.issn1002-0306.2021120242

    WEN X L. Effects of exogenous trisodium phosphate on activities of key enzymes of reactive oxygen species and phenylpropane metabolism and accumulation of phenolic compounds in jujube fruits[J]. Science and Technology of Food Industry, 2022, 43(17): 381−386. doi:  10.13386/j.issn1002-0306.2021120242
    [38] 王玲平, 周生茂, 戴丹丽, 等. 植物酚类物质研究进展[J]. 浙江农业学报,2010,22(5):696−701. [WANG L P, ZHOU S M, DAI D L, et al. Progress in plant phenolic compounds[J]. Acta Agriculturae Zhejiangensis,2010,22(5):696−701. doi:  10.3969/j.issn.1004-1524.2010.05.030

    WANG L P, ZHOU S M, DAI D L, et al. Progress in plant phenolic compounds[J]. Acta Agriculturae Zhejiangensis, 2010, 22(5): 696-701. doi:  10.3969/j.issn.1004-1524.2010.05.030
    [39] 尚军, 吴旺泽, 马永贵. 植物苯丙烷代谢途径[J]. 中国生物化学与分子生物学报,2022,38(11):1467−1476. [SHANG J, WU W Z, MA Y G. Phenylpropanoid metabolism pathway in plants[J]. Chinese Journal of Biochemistry and Molecular Biology,2022,38(11):1467−1476. doi:  10.13865/j.cnki.cjbmb.2022.03.1604

    SHANG J, WU W Z, MA Y G. Phenylpropanoid metabolism pathway in plants[J]. Chinese Journal of Biochemistry and Molecular Biology, 2022, 38(11): 1467-1476. doi:  10.13865/j.cnki.cjbmb.2022.03.1604
    [40] DIXON R A, PAIVA N L. Stress-Induced phenylpropanoid metabolism[J]. The Plant Cell,1995,7(7):1085−1097. doi:  10.2307/3870059
    [41] SCHILMILLER A L, STOUT J, WENG J K, et al. Mutations in the cinnamate 4-hydroxylase gene impact metabolism, growth and development in Arabidopsis[J]. The Plant Journal:for Cell and Molecular Biology,2009,60(5):771−782. doi:  10.1111/j.1365-313X.2009.03996.x
    [42] FAHRENDORF T, DIXON R A. Stress responses in alfalfa (medicago sativa l. ). xviii: molecular cloning and expression of the elicitor-inducible cinnamic acid 4-hydroxylase cytochrome p450[J]. Archives of Biochemistry and Biophysics,1993,305(2):509−515. doi:  10.1006/abbi.1993.1454
    [43] CHENG S, YAN J, MENG X, et al. Characterization and expression patterns of a cinnamate-4-hydroxylase gene involved in lignin biosynthesis and in response to various stresses and hormonal treatments in Ginkgo biloba[J]. Acta Physiologiae Plantarum,2017,40(1):7.
    [44] DONG N Q, LIN H X. Contribution of phenylpropanoid metabolism to plant development and plant–environment interactions[J]. Journal of Integrative Plant Biology,2021,63(1):180−209. doi:  10.1111/jipb.13054
    [45] EHLTING J, BÜTTNER D, WANG Q, et al. Three 4-coumarate: Coenzyme a ligases in arabidopsis thaliana represent two evolutionarily divergent classes in angiosperms[J]. The Plant Journal: for Cell and Molecular Biology,1999,19(1):9−20. doi:  10.1046/j.1365-313X.1999.00491.x
    [46] 汪开拓, 郑永华, 唐双双, 等. 茉莉酸甲酯对草莓果实采后腐烂、苯丙烷类代谢及抗氧化活性的影响[J]. 食品科技,2011,36(8):40−46. [WANG K T, ZHENG Y H, TANG S S, et al. Effects of methyl jasmonate (MeJA) on postharvest decay, phenylpropanoid metabolism and antioxidant activity in strawberry fruit[J]. Food Science and Technology,2011,36(8):40−46. doi:  10.13684/j.cnki.spkj.2011.08.005

    WANG K T, ZHENG Y H, TANG S S, et al. Effects of methyl jasmonate (MeJA) on postharvest decay, phenylpropanoid metabolism and antioxidant activity in strawberry fruit[J]. Food Science and Technology, 2011, 36(8): 40-46. doi:  10.13684/j.cnki.spkj.2011.08.005
  • 加载中
图(4) / 表(1)
计量
  • 文章访问数:  23
  • HTML全文浏览量:  11
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-10-19
  • 网络出版日期:  2023-06-19

目录

    /

    返回文章
    返回