Composition and Immune Regulatory Effect of Polysaccharides Extracted from Different Parts of Urtica macrorrhiza Hand.-Mazz.
-
摘要: 目的:研究粗根荨麻(Urtica macrorrhiza Hand.-Mazz.)不同部位粗多糖的含量及化学组成,初步评价其对巨噬细胞的调节作用。方法:利用热水提取、乙醇分级沉淀的方法分别制备粗根荨麻根、茎、叶粗多糖;通过高效液相色谱法分析其分子量及单糖组成;全波长扫描及红外光谱分析其结构特征;MTT法研究其细胞毒性;中性红染色法考察其对巨噬细胞吞噬活性的影响;Griess法和ELISA法分别检测其对巨噬细胞NO、TNF-α分泌的影响。结果:提取得到粗根荨麻叶(UML40、UML60),茎(UMS40、UMS60),根(UMR40、UMR60)共6种粗多糖,其中叶粗多糖得率最高为4.62%,UML40为占77.92%,茎粗多糖和根粗多糖得率分别为0.69%和1.13%;各粗多糖平均重均分子量从2.11 kDa到802.21 kDa不等,主要由D-Glc、D-Gal、D-Ara和D-GalA组成,但不同部位粗多糖的单糖组成摩尔比不同。此外,不同部位、不同分子量的粗根荨麻多糖免疫活性存在较大差异,其中UML40、UMS40、UMR40均能够显著活化巨噬细胞,促进其吞噬活性及NO、TNF-α分泌水平(P<0.05);UMR60虽然不能促进巨噬细胞吞噬但能显著促进细胞因子的分泌(P<0.001);UML60细胞毒性较大且活性较低;UMS60无激活巨噬细胞的活性。结论:粗根荨麻不同部位多糖在组成及免疫调节活性上存在一定差异,在对其进行研究以及开发利用时应当注意质量控制。Abstract: Objective: To study the content and chemical composition of crude polysaccharides from different parts of Urtica macrorrhiza Hand.-Mazz. and evaluate their regulatory effect on macrophage. Methods: The crude polysaccharides from the roots, stems and leaves of Urtica macrorrhiza Hand.-Mazz. were prepared by hot water extraction and ethanol fractional precipitation. Their molecular weight and monosaccharide composition of the polysaccharides were analyzed by high performance liquid chromatography (HPLC) and their structural characteristics were identified by full-wavelength scanning and infrared spectroscopy. The cytotoxicity of these polysaccharides was evaluated by MTT assay. The effect of polysaccharides on the phagocytic activity of macrophages was investigated by neutral red staining and their effect on the secretion of NO and TNF-α from macrophage was studied by Griess method and ELISA, respectively. Results: Six kinds of crude polysaccharides were extracted from leaves (UML40, UML60), stems (UMS40, UMS60) and roots (UMR40, UMR60), of which the highest yield of 4.62% was obtained from leaves, 77.92% from UML40, 0.69% from stems and 1.13% from roots. The average heavy average molecular weight of each crude polysaccharide ranged from 2.11 kDa to 802.21 kDa and consisted mainly composed of D-glucose, D-galactose, D-arabinose and D-galacturonic acid, while the molar ratio of monosaccharide components was various in different parts. In addition, the immune activities of polysaccharides from different parts with different molecular weights were obviously different, UML40, UMS40 and UMR40 could significantly activate macrophages, promote their phagocytosis activity, and increase their secretion of NO and TNF-α (P<0.05). Although UMR60 had no obvious effect on macrophage phagocytosis, it could significantly promote cytokine secretion (P<0.001). Whereas, UML60 showed higher cytotoxicity and lower activity, and UMS60 did not showed activity in activating macrophages. Conclusion: Polysaccharides from different parts of Urtica macrorrhiza Hand.-Mazz. varied in monosaccharide composition and immunomodulatory activity, thus quality control would be important for the research and development of these polysaccharides.
-
图 3 经PMP衍生化后的HPLC图UML40(A)、UML60(B)、UMS40(C)、UMS60(D)、UMR40(E)、UMR60(F)、标准混合单糖(G)
Figure 3. HPLC chromatogram of PMP derivatives of UML40 (A), UML60 (B), UMS40 (C), UMS60 (D), UMR40 (E), UMR60 (F) and standard mixed monosaccharides (G)
注:1:D-Man,2:L-Rha,3:GlcNAc,4:D-GlcA,5:D-GalA,6:D-Glc,7:D-Gal,8:D-Ara。
图 7 粗根荨麻不同部位粗多糖对巨噬细胞吞噬活性的影响
Figure 7. The phagocytic activity of macrophages of polysaccharides from different parts of Urtica macrorrhiza Hand.-Mazz.
注:与空白组相比,*P<0.05,**P<0.01,***P<0.001;图8同。
表 1 各单糖PMP衍生物的回归方程和线性范围
Table 1. Regression equations and linear ranges of PMP derivatives of each monosaccharides
单糖 回归方程 相关系数 线性范围(mg/mL) D-Man y=19222x−224.05 R2=0.9997 0.05~0.83 L-Rha y=31004x−447.73 R2=0.9996 0.05~0.83 D-GlcNAc y=5384.1x−140.62 R2=0.9995 0.10~1.67 D-GlcA y=5671.7x+277.36 R2=0.9923 0.10~1.67 D-GalA y=4396.9x+123.75 R2=0.996 0.10~1.67 D-Glc y=14616x−216.91 R2=0.9995 0.05~0.83 D-Gal y=22096x−299.78 R2=0.9996 0.05~0.83 D-Ara y=19315x−292.13 R2=0.9996 0.05~0.83 表 2 粗根荨麻不同部位粗多糖得率及占比
Table 2. The yield and proportion of crude polysaccharide in different parts of Urtica macrorrhiza Hand.-Mazz.
样品名称 UML40 UML60 UMS40 UMS60 UMR40 UMR60 产率(%) 3.60 1.02 0.35 0.34 0.81 0.32 占比(%) 55.90 15.84 5.43 5.28 12.58 4.97 表 3 粗根荨麻不同部位粗多糖的单糖比例
Table 3. Characteristics of monosaccharide composition of crude polysaccharides from different parts of Urtica macrorrhiza Hand.-Mazz.
样品 摩尔比 Man Rha GlcA GalA Glc Gal Ara UML40 1.00 0.30 0.18 0.75 1.56 3.36 2.23 UML60 1.00 0.45 0.18 1.43 1.07 4.84 1.93 UMS40 1.00 − 7.97 31.11 4.94 21.38 5.89 UMS60 1.00 1.98 3.75 13.02 78.37 25.22 16.03 UMR40 1.00 0.46 0.73 1.26 4.31 6.59 3.62 UMR60 1.00 1.98 2.97 5.39 18.77 28.86 15.87 注:“−”表示未检出。 -
[1] MZID M, BEN K S, BARDAA S, et al. Chemical composition, phytochemical constituents, antioxidant and anti-inflammatory activities of Urtica urens L. leaves[J]. Archives of Physiology and Biochemistry,2017,123(2):93−104. doi: 10.1080/13813455.2016.1255899 [2] TAHERI Y, QUISPE C, HERRERA-BRAVO J, et al. Urtica dioica-derived phytochemicals for pharmacological and therapeutic applications[J]. Evidence-based Complementary and Alternative Medicine,2022,2022:4024331. [3] KARAMI A, SHEIKHSOLEIMANI M, MEMARZADEH R, et al. Urtica dioica root extract on clinical and biochemical parameters in patients with benign prostatic hyperplasia, randomized controlled trial[J]. Pakistan Journal of Biological Sciences: PJBS,2020,23:1338−1344. doi: 10.3923/pjbs.2020.1338.1344 [4] OTLES S, YALCIN B. Phenolic compounds analysis of root, stalk, and leaves of nettle[J]. The Scientific World Journal,2012,2012:12. [5] ĐUROVIĆ S, PAVLIĆ B, ŠORGIĆ S, et al. Chemical composition of stinging nettle leaves obtained by different analytical approaches[J]. Journal of Functional Foods,2017,32:18−26. doi: 10.1016/j.jff.2017.02.019 [6] GRAUSO L, EMRICK S, BONANOMI G, et al. Metabolomics of the alimurgic plants Taraxacum officinale, Papaver rhoeas and Urtica dioica by combined NMR and GC–MS analysis[J]. Phytochemical Analysis,2019,30(5):535−546. doi: 10.1002/pca.2845 [7] PAULAUSKIENĖ A, TARASEVIČIENĖ Ž, LAUKAGALIS V. Influence of harvesting time on the chemical composition of wild stinging nettle (Urtica dioica L.)[J]. Plants,2021,10(4):686. doi: 10.3390/plants10040686 [8] WANG M, ZHANG Y, ZHANG H, et al. The active glycosides from Urtica fissa rhizome decoction[J]. Journal of natural medicines,2018,72(2):557−562. doi: 10.1007/s11418-018-1172-3 [9] TANG M, CHENG L, LIU Y, et al. Plant polysaccharides modulate immune function via the gut microbiome and may have potential in COVID-19 therapy[J]. Molecules,2022,27(9):2773. doi: 10.3390/molecules27092773 [10] GUO R, CHEN M, DING Y, et al. Polysaccharides as potential anti-tumor biomacromolecules-A review[J]. Frontiers in nutrition,2022,9:838179. doi: 10.3389/fnut.2022.838179 [11] HU Y, WANG S, SHI Z, et al. Purification, characterization, and antioxidant activity of polysaccharides from Okara[J]. Journal of Food Processing and Preservation,2022,46(3):e16411. [12] CLAUS-DESBONNET H, NIKLY E, NALBANTOVA V, et al. Polysaccharides and their derivatives as potential antiviral molecules[J]. Viruses,2022,14(2):426. doi: 10.3390/v14020426 [13] CHEN X C, HE S, LI Y X, et al. Inhibition of spontaneous canine benign prostatic hyperplasia by an Urtica fissa polysaccharide fraction[J]. Planta medica,2015,81(1):10−14. [14] WANG Z J, LI Y H, WANG C J, et al. Oral administration of Urtica macrorrhiza Hand. -Mazz. polysaccharides to protect against cyclophosphamide-induced intestinal immunosuppression[J]. Experimental and Therapeutic Medicine,2019,18(3):2178−2186. [15] QU M H, WANG C J, LIANG Y Q, et al. Urtica macrorrhiza Hand-Mazz polysaccharides induce cord blood monocytes into mature dendritic cells (DCs) and its effect on surface molecules expression of DCs[J]. Natural Product Research and Development,2016,28(5):745−748. [16] LI Y H, LIANG Y Q, WANG C J, et al. Effect of Urtica macrorrhiza Hand-Mazz polysaccharide on the phenotype of intestinal paired node cells and TLR4 in cyclophosphamide-induced immunosuppressed mice[J]. Chinese Traditional Patent Medicine,2017,39(6):1272−1276. [17] LI G, JU Y, WEN Y, et al. Screening of codonopsis radix polysaccharides with different molecular weights and evaluation of their immunomodulatory activity in vitro and in vivo[J]. Molecules,2022,27(17):5454. doi: 10.3390/molecules27175454 [18] TIAN H, LIANG Y, LIU G, et al. Moringa oleifera polysaccharides regulates caecal microbiota and small intestinal metabolic profile in C57BL/6 mice[J]. International Journal of Biological Macromolecules,2021,182:595−611. doi: 10.1016/j.ijbiomac.2021.03.144 [19] TAO S, REN Z, YANG Z, et al. Effects of different molecular weight polysaccharides from Dendrobium officinale Kimura & Migo on human colorectal cancer and transcriptome analysis of differentially expressed genes[J]. Frontiers in Pharmacology,2021,12:704486. doi: 10.3389/fphar.2021.704486 [20] DRIRA M, HENTATI F, BABICH O, et al. Bioactive carbohydrate polymers—between myth and reality[J]. Molecules,2021,26(23):7068. doi: 10.3390/molecules26237068 [21] FALERI C, XU X, MARERI L, et al. Immunohistochemical analyses on two distinct internodes of stinging nettle show different distribution of polysaccharides and proteins in the cell walls of bast fibers[J]. Protoplasma,2022,259(1):75−90. doi: 10.1007/s00709-021-01641-1 [22] GU Q H, LIU Y P, ZHEN L, et al. The structures of two glucomannans from Bletilla formosana and their protective effect on inflammation via inhibiting NF-κB pathway[J]. Carbohydrate Polymers, 2022: 119694. [23] ZHANG J Y, CHEN H L, LUO L, et al. Structures of fructan and galactan from Polygonatum cyrtonema and their utilization by probiotic bacteria[J]. Carbohydrate Polymers,2021,267:118219. doi: 10.1016/j.carbpol.2021.118219 [24] CHINESE P C. Pharmacopoeia of the people's republic of China: Part 4[S]. Peking: China Medical Science Press, 2020: 39−84. [25] MINZANOVA S T, MIRONOV V F, ARKHIPOVA D M, et al. Biological activity and pharmacological application of pectic polysaccharides: A review[J]. Polymers,2018,10(12):1407. doi: 10.3390/polym10121407 [26] ZOU Y F, LI C Y, FU Y P, et al. The comparison of preliminary structure and intestinal anti-inflammatory and anti-oxidative activities of polysaccharides from different root parts of Angelica sinensis (Oliv. ) Diels[J]. Journal of Ethnopharmacology, 2022: 115446. [27] ZHANG Y, ZHOU T, WANG H, et al. Structural characterization and in vitro antitumor activity of an acidic polysaccharide from Angelica sinensis (Oliv. ) Diels[J]. Carbohydrate Polymers,2016,147:401−408. doi: 10.1016/j.carbpol.2016.04.002 [28] KACURAKOVA M, CAPEK P, SASINKOVA V, et al. FT-IR study of plant cell wall model compounds: Pectic polysaccharides and hemicelluloses[J]. Carbohydrate Polymers,2000,43(2):195−203. doi: 10.1016/S0144-8617(00)00151-X [29] YUAN L L, QIU Z C, YANG Y M, et al. Preparation, structural characterization and antioxidant activity of water-soluble polysaccharides and purified fractions from blackened jujube by an activity-oriented approach[J]. Food Chemistry,2022,385:132637. doi: 10.1016/j.foodchem.2022.132637 [30] HONG T, YIN J Y, NIE S P, et al. Applications of infrared spectroscopy in polysaccharide structural analysis: Progress, challenge and perspective[J]. Food Chemistry:X,2021,12:100168. doi: 10.1016/j.fochx.2021.100168 [31] ZHANG X, CAI Z, MAO H, et al. Isolation and structure elucidation of polysaccharides from fruiting bodies of mushroom Coriolus versicolor and evaluation of their immunomodulatory effects[J]. International Journal of Biological Macromolecules,2021,166:1387−1395. doi: 10.1016/j.ijbiomac.2020.11.018 [32] SHEN C Y, JIANG J G, LI M Q, et al. Structural characterization and immunomodulatory activity of novel polysaccharides from Citrus aurantium Linn. variant amara Engl[J]. Journal of Functional Foods,2017,35:352−362. doi: 10.1016/j.jff.2017.05.055 -