• 食品科学与工程领域高质量科技期刊分级目录第一方阵T1
  • Scopus
  • FSTA
  • 北大核心期刊
  • 中国核心学术期刊RCCSE
  • DOAJ
  • JST China
  • 中国精品科技期刊
  • 中国农业核心期刊
  • CA
  • WJCI
  • 中国科技核心期刊CSTPCD
  • 中国生物医学SinoMed
中国精品科技期刊2020 食品青年科学家峰会

原核漆酶的研究进展及其应用

张馨 刘功良 白卫东 梁景龙 刘锐

张馨,刘功良,白卫东,等. 原核漆酶的研究进展及其应用[J]. 新宝登录入口(中国)有限公司,2023,44(15):454−465. doi:  10.13386/j.issn1002-0306.2022100306
引用本文: 张馨,刘功良,白卫东,等. 原核漆酶的研究进展及其应用[J]. 新宝登录入口(中国)有限公司,2023,44(15):454−465. doi:  10.13386/j.issn1002-0306.2022100306
ZHANG Xin, LIU Gongliang, BAI Weidong, et al. Research Progress and Application of Prokaryotic Laccase[J]. Science and Technology of Food Industry, 2023, 44(15): 454−465. (in Chinese with English abstract). doi:  10.13386/j.issn1002-0306.2022100306
Citation: ZHANG Xin, LIU Gongliang, BAI Weidong, et al. Research Progress and Application of Prokaryotic Laccase[J]. Science and Technology of Food Industry, 2023, 44(15): 454−465. (in Chinese with English abstract). doi:  10.13386/j.issn1002-0306.2022100306

原核漆酶的研究进展及其应用

doi: 10.13386/j.issn1002-0306.2022100306
基金项目: 广东省重点建设学科科研能力提升项目(2021ZDJS005);广东省省级农业科技创新及推广项目(No. 2023KJ101);广州市科技计划项目(202102020558);广东省企业科技特派员专项资助项目(GDKTP2021036400)。
详细信息
    作者简介:

    张馨(1998−),女,硕士研究生,研究方向:食品加工与安全,E-mail:1932675623@qq.com

    通讯作者:

    刘锐(1975−),男,硕士,讲师,研究方向:食品生物技术,E-mail:liurui@zhku.edu.cn

  • 中图分类号: TS201.2

Research Progress and Application of Prokaryotic Laccase

  • 摘要: 漆酶可以利用分子氧作为辅助底物,氧化多种酚类或非酚类底物,反应过程中的唯一副产物为水,因而漆酶被认为是一种环保“绿色工具酶”。漆酶在污水处理、造纸、纺织、食品、有机合成、生物制药、检测及生态修复等多个行业具有重要的应用价值。原核漆酶与真菌漆酶相比,往往具有如下的优点:更高的热稳定性和更高的最适反应温度;更适应碱性条件下的催化反应;对抑制剂和金属离子具有更低的敏感性和依赖性;更易于进行异源表达,便于蛋白质工程改造等。因此,近年来,原核漆酶越来越受到人们的关注。本文对原核漆酶的来源、结构、催化过程以及理化性质进行了详细的阐述。并介绍了近些年来原核漆酶的应用及其最新研究进展。
  • 图  1  枯草芽孢杆菌CotA三级结构

    Figure  1.  Tertiary structure of Bacillus subtilis CotA

    注:a.结合口袋;b.单核铜离子示意图:type1铜离子与相关原子之间的原子间距离;c.三核三角区铜离子示意图:一个type2和两个type3铜离子组成的三核三角区与相关原子之间的原子间距离;d.氧气通道示意图;e.水分子通道示意图。

    图  2  CotA漆酶的反应机制

    Figure  2.  Reaction mechanism of CotA laccase

  • [1] YOSHIDA, HIKOROKURO. LXIII.—Chemistry of lacquer (Urushi). Part I. Communication from the chemical society of Tokio[J]. Journal of the Chemical Society, Transactions,1883,43:472−486. doi:  10.1039/CT8834300472
    [2] GUAN Z B, LUO Q, WANG H R, et al. Bacterial laccases: Promising biological green tools for industrial applications[J]. Cell Mol Life Sci,2018,75(19):3569−3592. doi:  10.1007/s00018-018-2883-z
    [3] KITTL R, MUEANGTOOM K, GONAUS C, et al. A chloride tolerant laccase from the plant pathogen ascomycete Botrytis aclada expressed at high levels in Pichia pastoris[J]. J Biotechnol,2012,157(2):304−314. doi:  10.1016/j.jbiotec.2011.11.021
    [4] GUAN Z B, SHUI Y, SONG C M, et al. Efficient secretory production of CotA-laccase and its application in the decolorization and detoxification of industrial textile wastewater[J]. Environ Sci Pollut Res Int,2015,22(12):9515−9523. doi:  10.1007/s11356-015-4426-6
    [5] FERNANDES T, SILVEIRA W, PASSOS F, et al. Laccases from actinobacteria—what we have and what to expect[J]. Advances in Microbiology,2014,4(6):285−296. doi:  10.4236/aim.2014.46035
    [6] PRINS A, KLEINSMIDT L, KHAN N, et al. The effect of mutations near the T1 copper site on the biochemical characteristics of the small laccase from Streptomyces coelicolor A3(2)[J]. Enzyme Microb Technol,2015,68:23−32. doi:  10.1016/j.enzmictec.2014.10.003
    [7] OSMA J F, TOCA-HERRERA J L, RODRíGUEZ-COUTO S. Uses of laccases in the food industry[J]. Enzyme Res,2010,2010:918761.
    [8] LEGERSKÁ B, CHMELOVÁ D, ONDREJOVIČ M. Decolourization and detoxification of monoazo dyes by laccase from the white-rot fungus Trametes versicolor[J]. J Biotechnol,2018,285:84−90. doi:  10.1016/j.jbiotec.2018.08.011
    [9] 刘岩, 刘锐, 苏新国, 等. 漆酶的研究进展及其应用[J]. 安徽农学通报, 2016, (13): 25−27.

    LIU Yan, LIU Rui, SU Xinguo, et al. Research progress and application of laccase[J] Anhui Agricultural Bulletin, 2016, (13): 25−27.
    [10] VERMA A, SHIRKOT P. Purification and characterization of thermostable laccase from thermophilic Geobacillus thermocatenulatus MS5 and its application in removal of textiles dyes[J]. Journal of Biosciences,2014,2(8):479−485.
    [11] VIRK A P, SHARMA P, CAPALASH N. Use of laccase in pulp and paper industry[J]. Biotechnol Prog,2012,28(1):21−32. doi:  10.1002/btpr.727
    [12] ECE S, LAMBERTZ C, FISCHER R, et al. Heterologous expression of a Streptomyces cyaneus laccase for biomass modification applications[J]. AMB Express,2017,7(1):86. doi:  10.1186/s13568-017-0387-0
    [13] MAYER A M, STAPLES R C. Laccase: New functions for an old enzyme[J]. Phytochemistry,2002,60(6):551−565. doi:  10.1016/S0031-9422(02)00171-1
    [14] GIVAUDAN A, EFFOSSE A, FAURE D, et al. Polyphenol oxidase in Azospirillum lipoferum isolated from rice rhizosphere: Evidence for laccase activity in non-motile strains of Azospirillum lipoferum[J]. Fems Microbiology Letters,2010,108(2):205−210.
    [15] ALEXANDRE G, ZHULIN I B. Laccases are widespread in bacteria[J]. Trends Biotechnol,2000,18(2):41−42. doi:  10.1016/S0167-7799(99)01406-7
    [16] KUDDUS M, JOSEPH B, RAMTEKE P W. Production of laccase from newly isolated Pseudomonas putida and its application in bioremediation of synthetic dyes and industrial effluents[J]. Biocatalysis & Agricultural Biotechnology,2013,2(4):333−338.
    [17] MANDIC M, DJOKIC L, NIKOLAIVITS E, et al. Identification and characterization of new laccase biocatalysts from Pseudomonas species suitable for degradation of synthetic textile dyes[J]. Catalysts,2019,9(7):629. doi:  10.3390/catal9070629
    [18] SIDDIQUI, MASOOD, AHMED, et al. Identification of a novel copper-activated and halide-tolerant laccase in Geobacillus thermopakistaniensis[J]. Extremophiles Life Under Extreme Conditions,2017,21:563−571. doi:  10.1007/s00792-017-0925-3
    [19] WANG C L, ZHAO M, LI D B, et al. Isolation and characterization of a novel Bacillus subtilis WD23 exhibiting laccase activity from forest soil[J]. Afr J Biotechnol,2010,2010,9(34):5496−5502.
    [20] SOLANO F, GARCIA E, PEREZ D Y, et al. Isolation and characterization of strain MMB-1 (CECT 4803), a novel melanogenic marine bacterium[J]. Applied & Environmental Microbiology,1997,63(9):3499−3506.
    [21] BROWN N L, BARRETT S R, CAMAKARIS J, et al. Molecular genetics and transport analysis of the copper-resistance determinant (pco) from Escherichia coli plasmid pRJ1004[J]. Mol Microbiol,1995,17(6):1153−1166. doi:  10.1111/j.1365-2958.1995.mmi_17061153.x
    [22] ZENG J, LIN X, ZHANG J, et al. Oxidation of polycyclic aromatic hydrocarbons by the bacterial laccase CueO from E. coli[J]. Appl Microbiol Biotechnol,2011,89(6):1841−1849. doi:  10.1007/s00253-010-3009-1
    [23] ENDO K, HOSONO K, BEPPU T, et al. A novel extracytoplasmic phenol oxidase of Streptomyces: Its possible involvement in the onset of morphogenesis[J]. Microbiology (Reading), 2002, 148(Pt 6): 1767−1776.
    [24] ENDO K, HAYASHI Y, HIBI T, et al. Enzymological characterization of EpoA, a laccase-like phenol oxidase produced by Streptomyces griseus[J]. J Biochem,2003,133(5):671−677. doi:  10.1093/jb/mvg086
    [25] FANG Z, LI T, WANG Q, et al. A bacterial laccase from marine microbial metagenome exhibiting chloride tolerance and dye decolorization ability[J]. Applied Microbiology & Biotechnology,2011,89(4):1103−1110.
    [26] HENNE A, BRÜGGEMANN H, RAASCH C, et al. The genome sequence of the extreme thermophile Thermus thermophilus[J]. Nat Biotechnol,2004,22(5):547−553. doi:  10.1038/nbt956
    [27] MIYAZAKI K. A hyperthermophilic laccase from Thermus thermophilus HB27[J]. Extremophiles Life Under Extreme Conditions,2005,9(6):415−425. doi:  10.1007/s00792-005-0458-z
    [28] FERNANDES A T, SOARES C M, PEREIRA M M, et al. A robust metallo-oxidase from the Hyperthermophilic bacterium Aquifex aeolicus[J]. FEBS Journal,2010,274(11):2683−2694.
    [29] UTHANDI S, SAAD B, HUMBARD M A, et al. LccA, an archaeal laccase secreted as a highly stable glycoprotein into the extracellular medium by Haloferax volcanii[J]. Applied and Environmental Microbiology,2010,76(3):733−743. doi:  10.1128/AEM.01757-09
    [30] UTHANDI S, PRUNETTI L, VERA I, et al. Enhanced archaeal laccase production in recombinant Escherichia coli by modification of N-terminal propeptide and twin arginine translocation motifs[J]. J Ind Microbiol Biotechnol,2012,39(10):1523−1532. doi:  10.1007/s10295-012-1152-7
    [31] MOTAMEDI E, KAVOUSI K, MOTAHAR S, et al. Efficient removal of various textile dyes from wastewater by novel thermo-halotolerant laccase[J]. Bioresour Technol,2021(9):125468.
    [32] YANG Q H, ZHANG M L, ZHANG M M, et al. Characterization of a novel, cold-adapted, and thermostable laccase-like enzyme with high tolerance for organic solvents and salt and potent dye decolorization ability, derived from a marine metagenomic library[J]. Front Microbiol, 2018, 9: 2998.
    [33] ENGUITA F J, MARTINS L O, HENRIQUES A O, et al. Crystal structure of a bacterial endospore coat component[J]. Journal of Biological Chemistry,2003,278(21):19416−19425. doi:  10.1074/jbc.M301251200
    [34] ENGUITA F J, MARCAL D, MARTINS L O, et al. Substrate and dioxygen binding to the endospore coat laccase from Bacillus subtilis[J]. Journal of Biological Chemistry,2004,279(22):23472−23476. doi:  10.1074/jbc.M314000200
    [35] HULLO M F, MOSZER I, DANCHIN A, et al. CotA of Bacillus subtilis is a copper-dependent laccase[J]. Journal of Bacteriology,2001,183(18):5426−5430. doi:  10.1128/JB.183.18.5426-5430.2001
    [36] BENTO I, SILVA C S, CHEN Z, et al. Mechanisms underlying dioxygen reduction in laccases. Structural and modelling studies focusing on proton transfer[J]. BMC Structural Biology,2010,10(1):28. doi:  10.1186/1472-6807-10-28
    [37] NAKAMURA K, GO N. Function and molecular evolution of multicopper blue proteins[J]. Cellular & Molecular Life Sciences Cmls,2005,62(18):2050−2066.
    [38] JANUSZ G, PAWLIK A, ŚWIDERSKA-BUREK U, et al. Laccase properties, physiological functions, and evolution[J]. Int J Mol Sci,2020,21(3):966. doi:  10.3390/ijms21030966
    [39] DWIVEDI U N, SINGH P, PANDEY V P, et al. Structure-function relationship among bacterial, fungal and plant laccases[J]. J Mol Catal B-Enzym,2011,68(2):117−128. doi:  10.1016/j.molcatb.2010.11.002
    [40] GUPTA N, LEE F S, FARINAS E T. Laboratory evolution of laccase for substrate specificity[J]. Journal of Molecular Catalysis B:Enzymatic,2010,62(3):230−234.
    [41] CHEN Y, LUO Q, ZHOU W, et al. Improving the catalytic efficiency of Bacillus pumilus CotA-laccase by site-directed mutagenesis[J]. Appl Microbiol Biotechnol,2017,101(5):1935−1944. doi:  10.1007/s00253-016-7962-1
    [42] XU K Z, WANG H R, WANG Y J, et al. Enhancement in catalytic activity of CotA-laccase from Bacillus pumilus W3 via site-directed mutagenesis[J]. J Biosci Bioeng,2020,129(4):405−411. doi:  10.1016/j.jbiosc.2019.09.020
    [43] MA H, XU K Z, WANG Y J, et al. Enhancing the decolorization activity of Bacillus pumilus W3 CotA-laccase to reactive black 5 by site-saturation mutagenesis[J]. Appl Microbiol Biotechnol,2020,104(21):9193−9204. doi:  10.1007/s00253-020-10897-1
    [44] HAKULINEN N, ROUVINEN J. Three-dimensional structures of laccases[J]. Cell Mol Life Sci,2015,72(5):857−868. doi:  10.1007/s00018-014-1827-5
    [45] LIU Z C, XIE T, ZHONG Q P, et al. Crystal structure of CotA laccase complexed with 2, 2-azinobis-(3-ethylbenzothiazoline-6-sulfonate) at a novel binding site[J]. Acta Crystallographica Section F Structural Biology Communications,2016,72(4):328−335. doi:  10.1107/S2053230X1600426X
    [46] JIMÉNEZ J, DOERR S, MARTÍNEZ-ROSELL G, et al. DeepSite: Protein-binding site predictor using 3D-convolutional neural networks[J]. Bioinformatics,2017,33(19):3036−3042.
    [47] EBERHARDT J, SANTOS-MARTINS D, TILLACK A, et al. AutoDock Vina 1.2. 0: New docking methods, expanded force field, and Python bindings[J]. J Chem Inf Model,2021,61(8):3891−3898. doi:  10.1021/acs.jcim.1c00203
    [48] SILVA C S, DURÃO P, FILLAT A, et al. Crystal structure of the multicopper oxidase from the pathogenic bacterium Campylobacter jejuni CGUG11284: Characterization of a metallo-oxidase†[J]. Metallomics,2011,4(1):37−47.
    [49] CHEN Z, DURÃO P, SILVA C S, et al. The role of Glu498 in the dioxygen reactivity of CotA-laccase from Bacillus subtilis[J]. Dalton Transactions,2010,39(11):2875−2882. doi:  10.1039/b922734b
    [50] GRAY H B, MALMSTRÖM B G, WILLIAMS R J P. Copper coordination in blue proteins[J]. JBIC Journal of Biological Inorganic Chemistry,2000,5(5):551−559. doi:  10.1007/s007750000146
    [51] MONZA E, LUCAS M F, CAMARERO S, et al. Insights into laccase engineering from molecular simulations: toward a binding-focused strategy[J]. The Journal of Physical Chemistry Letters,2015,6(8):1447−1453. doi:  10.1021/acs.jpclett.5b00225
    [52] DURÃO P, BENTO I, FERNANDES A T, et al. Perturbations of the T1 copper site in the CotA laccase from Bacillus subtilis: Structural, biochemical, enzymatic and stability studies[J]. JBIC Journal of Biological Inorganic Chemistry,2006,11(4):514. doi:  10.1007/s00775-006-0102-0
    [53] DURÃO P, CHEN Z, SILVA C S, et al. Proximal mutations at the type 1 copper site of CotA laccase: Spectroscopic, redox, kinetic and structural characterization of I494A and L386A mutants[J]. Biochem J,2008,412(2):339−346. doi:  10.1042/BJ20080166
    [54] KOSCHORRECK K, SCHMID R D, URLACHER V B. Improving the functional expression of a Bacillus licheniformis laccase by random and site-directed mutagenesis[J]. BMC Biotechnol,2009,9(1):12. doi:  10.1186/1472-6750-9-12
    [55] BU T, YANG R, ZHANG Y, et al. Improving decolorization of dyes by laccase from Bacillus licheniformis by random and site-directed mutagenesis[J]. PeerJ,2020,8:e10267. doi:  10.7717/peerj.10267
    [56] XIE T, LIU Z, WANG G. Structural Insight into the allosteric coupling of cu1 site and trinuclear cu cluster in cota laccase[J]. Chembiochem,2018,19(14):1502−1506. doi:  10.1002/cbic.201800236
    [57] QUAN L, CHEN Y, XIA J, et al. Functional expression enhancement of Bacillus pumilus CotA-laccase mutant WLF through site-directed mutagenesis[J]. Enzyme & Microbial Technology,2018,109:11.
    [58] BRISSOS V, CHEN Z, MARTINS L O. The kinetic role of carboxylate residues in the proximity of the trinuclear centre in the O2 reactivity of CotA-laccase[J]. Dalton Trans,2012,41(20):6247−6255. doi:  10.1039/c2dt12067d
    [59] BENTO I, MARTINS L O, GATO LOPES G, et al. Dioxygen reduction by multi-copper oxidases; a structural perspective[J]. Dalton Trans,2005(21):3507−3513. doi:  10.1039/b504806k
    [60] GARZILLO A M, COLAO M C, BUONOCORE V, et al. Structural and kinetic characterization of native laccases from Pleurotus ostreatus, Rigidoporus lignosus, and Trametes trogii[J]. Journal of Protein Chemistry,2001,20(3):191−201. doi:  10.1023/A:1010954812955
    [61] KALLIO J P, AUER S, JÄNIS J, et al. Structure-function studies of a Melanocarpus albomyces laccase suggest a pathway for oxidation of phenolic compounds[J]. J Mol Biol,2009,392(4):895−909. doi:  10.1016/j.jmb.2009.06.053
    [62] SHLEEV S, RUZGAS T. Transistor-like behavior of a fungal laccase[J]. Angew Chem Int Ed Engl,2008,47(38):7270−7274. doi:  10.1002/anie.200801364
    [63] SILVA C S, DAMAS J M, CHEN Z, et al. The role of Asp116 in the reductive cleavage of dioxygen to water in CotA laccase: Assistance during the proton-transfer mechanism[J]. Acta Crystallogr D Biol Crystallogr, 2012, 68(Pt 2): 186−193.
    [64] JONES S M, SOLOMON E I. Electron transfer and reaction mechanism of laccases[J]. Cellular and Molecular Life Sciences,2015,72(5):869−883. doi:  10.1007/s00018-014-1826-6
    [65] MOIN S F, OMAR M N. Laccase enzymes: Purification, structure to catalysis and tailoring[J]. Protein Pept Lett,2014,21(8):707−713.
    [66] BOURBONNAIS R, PAICE M G. Oxidation of non-phenolic substrates: An expanded role for laccase in lignin biodegradation[J]. FEBS Letters,1990,267(1):99−102. doi:  10.1016/0014-5793(90)80298-W
    [67] 郭梅, 蒲军, 路福平, 等. 白腐菌漆酶特性及其应用前景[J]. 天津农学院学报,2004(3):44−47. [GUO Mei, PU Jun, LU Fuping, et al. Characteristics and application prospects of white rot fungus laccase[J]. Journal of Tianjin Agricultural University,2004(3):44−47.

    GUO Mei, PU Jun, LU Fuping, et al. Characteristics and application prospects of white rot fungus laccase[J] Journal of Tianjin Agricultural University, 2004(3): 44−47.
    [68] KUDANGA T, LE ROES-HILL M. Laccase applications in biofuels production: Current status and future prospects[J]. Appl Microbiol Biotechnol,2014,98(15):6525−6542. doi:  10.1007/s00253-014-5810-8
    [69] RAM, CHANDRA, PANKAJ, et al. Properties of bacterial laccases and their application in bioremediation of industrial wastes[J]. Environmental Science Processes & Impacts,2015,17(2):326−342.
    [70] LU L, ZHAO M, WANG T N, et al. Characterization and dye decolorization ability of an alkaline resistant and organic solvents tolerant laccase from Bacillus licheniformis LS04[J]. Bioresour Technol,2012,115:35−40. doi:  10.1016/j.biortech.2011.07.111
    [71] XIAO Y, LI J, WU P, et al. An alkaline thermostable laccase from termite gut associated strain of Bacillus stratosphericus[J]. Int J Biol Macromol,2021,179:270−278. doi:  10.1016/j.ijbiomac.2021.02.205
    [72] SHERIF M, WAUNG D, KORBECI B, et al. Biochemical studies of the multicopper oxidase (small laccase) from Streptomyces coelicolor using bioactive phytochemicals and site-directed mutagenesis[J]. Microb Biotechnol,2013,6(5):588−597. doi:  10.1111/1751-7915.12068
    [73] SONICA S, PRINCE S, SHILPA S, et al. Purification and characterization of an extracellular, thermo-alkali-stable, metal tolerant laccase from Bacillus tequilensis SN4[J]. PLoS One,2014,9(5):e96951. doi:  10.1371/journal.pone.0096951
    [74] GUAN Z B, ZHANG N, SONG C M, et al. Molecular cloning, characterization, and dye-decolorizing ability of a temperature- and pH-stable laccase from Bacillus subtilis X1[J]. Appl Biochem Biotechnol,2014,172(3):1147−1157. doi:  10.1007/s12010-013-0614-3
    [75] SINGH, G. , CAPALASH, et al. A pH-stable laccase from Alkali-tolerant γ-proteobacterium JB: Purification, characterization and indigo carmine degradation[J]. Enzyme Microb Technol,2007,41:794−799. doi:  10.1016/j.enzmictec.2007.07.001
    [76] OLAJUYIGBE F M, FATOKUN C O. Biochemical characterization of an extremely stable pH-versatile laccase from Sporothrix caris CPF-05[J]. Int J Biol Macromol, 2017, 94(Pt A): 535−543.
    [77] JAVADZADEH S G, ASOODEH A. A novel textile dye degrading extracellular laccase from symbiotic bacterium of Bacillus sp. CF96 isolated from gut termite (Anacanthotermes)[J]. Int J Biol Macromol,2020,145:355−363. doi:  10.1016/j.ijbiomac.2019.12.205
    [78] ZHANG C, ZHANG S, DIAO H, et al. Purification and characterization of a temperature- and pH-stable laccase from the spores of Bacillus vallismortis fmb-103 and its application in the degradation of malachite green[J]. J Agric Food Chem,2013,61(23):5468−5473. doi:  10.1021/jf4010498
    [79] 吴怡, 马鸿飞, 曹永佳, 等. 真菌漆酶的性质、生产、纯化及固定化研究进展[J]. 生物技术通报,2019,35(9):10. [WU Yi, MA Hongfei, CAO Yongjia, et al. Research progress on properties, production, purification and immobilization of fungal laccase[J]. Biotechnology Bulletin,2019,35(9):10.

    WU Yi, MA Hongfei, CAO Yongjia, et al Research progress on properties, production, purification and immobilization of fungal laccase[J] Biotechnology Bulletin, 2019, 35 (9): 10.
    [80] SIROOSI M, AMOOZEGAR M A, KHAJEH K. Purification and characterization of an alkaline chloride-tolerant laccase from a halotolerant bacterium, Bacillus sp. strain WT[J]. Journal of Molecular Catalysis B Enzymatic,2016,134:89−97. doi:  10.1016/j.molcatb.2016.10.001
    [81] 马小建. 大肠杆菌来源的漆酶CueO在毕赤酵母GS115中的高效表达及在染料脱色中的应用研究[D]. 武汉: 湖北大学, 2017.

    MA Xiaojian. High expression of laccase CueO from Escherichia coli in Pichia pastoris GS115 and its application in dye decolorization[D]. Wuhan: Hubei University, 2017.
    [82] CZYZOWSKA A, KLEWICKA E, POGORZELSKI E, et al. Polyphenols, vitamin C and antioxidant activity in wines from Rosa canina L. and Rosa rugosa Thunb[J]. Journal of Food Composition and Analysis, 2015: 62−68.
    [83] 胡周月, 钱磊, 张志军, 等. 漆酶在食品工业及其他领域上的应用进展[J]. 天津农学院学报,2019,26(3):4. [HU Zhouyue, QIAN Lei, ZHANG Zhijun, et al. Application progress of laccase in food industry and other fields[J]. Journal of Tianjin Agricultural University,2019,26(3):4.

    HU Zhouyue, QIAN Lei, ZHANG Zhijun, et al Application progress of laccase in food industry and other fields[J] Journal of Tianjin Agricultural University, 2019, 26 (3): 4.
    [84] CONRAD L S, SPONHOLZ W R, BERKER O. Treatment of cork with a phenol oxidizing enzyme: US, US09/296439[P]. 2000-11-28.
    [85] ROSANA C M, GLÁUCIA M P, NELSON D, et al. Potential applications of laccase in the food industry[J]. Trends in Food Science & Technology,2002,13:205−216.
    [86] PEZZELLA C, GUARINO L, PISCITELLI A. How to enjoy laccases[J]. Cellular and Molecular Life Sciences,2015,72(5):923−940. doi:  10.1007/s00018-014-1823-9
    [87] 郭盼, 马惠玲, 罗耀红, 等. 漆酶对苹果酚类物质的催化特性[J]. 西北农林科技大学学报(自然科学版),2011,39(3):103−112. [GUO Pan, MA Huiling, LUO Yaohong, et al. Catalytic properties of laccase on apple phenols[J]. Journal of Northwest Agriculture and Forestry University (Natural Science Edition),2011,39(3):103−112.

    GUO Pan, MA Huiling, LUO Yaohong, et al Catalytic properties of laccase on apple phenols[J] Journal of Northwest Agriculture and Forestry University (Natural Science Edition), 2011, 39 (3): 103−112.
    [88] 乔晓兰, 李文钊, 毛磊红, 等. 漆酶在浓缩苹果汁生产中的应用[J]. 农业机械,2012(9):102−105. [QIAO Xiaolan, LI Wenzhao, MAO Leihong, et al. Application of laccase in the production of concentrated apple juice[J]. Agricultural Machinery,2012(9):102−105.

    QIAO Xiaolan, LI Wenzhao, MAO Leihong, et al Application of laccase in the production of concentrated apple juice[J] Agricultural Machinery, 2012, 000(6): 102−105.
    [89] HUANG H, LEI L, BAI J, et al. Efficient elimination and detection of phenolic compounds in juice using laccase mimicking nanozymes[J]. Chinese Journal of Chemical Engineering,2020,29:167−175.
    [90] BRIJWANI K, RIGDON A, VADLANI P V. Fungal laccases: production, function, and applications in food processing[J]. Enzyme Research, 2010, 149748.
    [91] UPADHYAY P, SHRIVASTAVA R, AGRAWAL P K. Bioprospecting and biotechnological applications of fungal laccase[J]. 3 Biotech,2016,6(1):15. doi:  10.1007/s13205-015-0316-3
    [92] MOKOONLALL A, SYKORA L, PFANNSTIEL J, et al. A feasibility study on the application of a laccase-mediator system in stirred yoghurt at the pilot scale[J]. Food Hydrocolloids,2016,60:119−127. doi:  10.1016/j.foodhyd.2016.03.027
    [93] SONDHI S, SHARMA P, GEORGE N, et al. An extracellular thermo-alkali-stable laccase from Bacillus tequilensis SN4, with a potential to biobleach softwood pulp[J]. 3 Biotech,2015,5(2):175−185. doi:  10.1007/s13205-014-0207-z
    [94] VIRK A P, PURI M, GUPTA V, et al. Combined enzymatic and physical deinking methodology for efficient eco-friendly recycling of old newsprint[J]. PLoS One,2013(8):e72346.
    [95] 郑志强. 耐热性细菌漆酶的高效表达及其在纸浆生物漂白中的应用[D]. 无锡: 江南大学, 2015.

    ZHENG Zhiqiang. High expression of thermostable bacterial laccase and its application in pulp biobleaching[D]. Wuxi: Jiangnan University, 2015.
    [96] 张应玖, 杨雪, 金兰娜. 一种来源于枯草杆菌ZXN4的细菌漆酶基因, 细菌漆酶及其应用: 中国, CN106434707A[P]. 2019-08-06.

    ZHANG Yingjiu, YANG Xue, JIN Lanna. A bacterial laccase gene from Bacillus subtilis ZXN4, bacterial laccase and its application: China, CN106434707A[P]. 2019-08-06.
    [97] WANG T N, ZHAO M. A simple strategy for extracellular production of CotA laccase in Escherichia coli and decolorization of simulated textile effluent by recombinant laccase[J]. Applied Microbiology and Biotechnology,2017,101(2):685−696. doi:  10.1007/s00253-016-7897-6
    [98] PANWAR V, SHEIKH J N, DUTTA T. Sustainable denim bleaching by a novel thermostable bacterial laccase[J]. Applied Biochemistry and Biotechnology, 2020: 1−17.
    [99] ZILLE A, TZANOV T, GÜBITZ G M, et al. Immobilized laccase for decolourization of reactive black 5 dyeing effluent[J]. Biotechnol Lett,2003,25(17):1473−1477. doi:  10.1023/A:1025032323517
    [100] LIU J, CHEN J, ZUO K, et al. Chemically induced oxidative stress improved bacterial laccase-mediated degradation and detoxification of the synthetic dyes[J]. Ecotoxicol Environ Saf,2021,226:112823. doi:  10.1016/j.ecoenv.2021.112823
    [101] 刘锐, 张晓柔, 陈欣强, 等. 利用细菌漆酶对有机磷农药的降解方法: 中国, CN201911390161.5[P]. 2022-06-03.

    LIU Rui, ZHANG Xiaorou, CHEN Xinqiang, et al Degradation of organophosphorus pesticides by bacterial laccase: China, CN201911390161.5[P]. 2022-06-03.
    [102] CHENG C M, PATEL A K, SINGHANIA R R, et al. Heterologous expression of bacterial CotA-laccase, characterization and its application for biodegradation of malachite green[J]. Bioresour Technol,2021,340:125708. doi:  10.1016/j.biortech.2021.125708
    [103] MURUGESAN R, VEMBU B. Production of extracellular laccase from the newly isolated Bacillus sp. PK4[J]. African Journal of Biotechnology,2016,15(34):1813−1826. doi:  10.5897/AJB2016.15509
    [104] MENAKA S, LONE T A, LONE R A. Cloning of laccase gene from a newly isolated 2, 4-dichlorophenol degrading Bacillus subtilis from dyeing industry sites[J]. 2015, 15 (8): 1602−1608.
    [105] RODRíGUEZ-DELGADO M, ALEMáN-NAVA G, RODRíGUEZ-DELGADO J, et al. Laccase-based biosensors for detection of phenolic compounds[J]. TrAC Trends in Analytical Chemistry,2015,74:21−45. doi:  10.1016/j.trac.2015.05.008
    [106] DI FUSCO M, TORTOLINI C, DERIU D, et al. Laccase-based biosensor for the determination of polyphenol index in wine[J]. Talanta,2010,81(1-2):235−240. doi:  10.1016/j.talanta.2009.11.063
    [107] CHAWLA S, RAWAL R, KUMAR D, et al. Amperometric determination of total phenolic content in wine by laccase immobilized onto silver nanoparticles/zinc oxide nanoparticles modified gold electrode[J]. Analytical Biochemistry,2012,430(1):16−23. doi:  10.1016/j.ab.2012.07.025
  • 加载中
图(2)
计量
  • 文章访问数:  22
  • HTML全文浏览量:  14
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-11-02
  • 网络出版日期:  2023-06-19

目录

    /

    返回文章
    返回