• 食品科学与工程领域高质量科技期刊分级目录第一方阵T1
  • Scopus
  • FSTA
  • 北大核心期刊
  • 中国核心学术期刊RCCSE
  • DOAJ
  • JST China
  • 中国精品科技期刊
  • 中国农业核心期刊
  • CA
  • WJCI
  • 中国科技核心期刊CSTPCD
  • 中国生物医学SinoMed
中国精品科技期刊2020 食品青年科学家峰会

玉米醇溶蛋白纳米颗粒的体外消化特性

张子豪 徐硕 逄格雨 张雨晴 于少轩 宋元达

张子豪,徐硕,逄格雨,等. 玉米醇溶蛋白纳米颗粒的体外消化特性[J]. 新宝登录入口(中国)有限公司,2023,44(13):1−8. doi:  10.13386/j.issn1002-0306.2022110187
引用本文: 张子豪,徐硕,逄格雨,等. 玉米醇溶蛋白纳米颗粒的体外消化特性[J]. 新宝登录入口(中国)有限公司,2023,44(13):1−8. doi:  10.13386/j.issn1002-0306.2022110187
ZHANG Zihao, XU Shuo, PANG Geyu, et al. In Vitro Digestive Properties of Zein Nanoparticles[J]. Science and Technology of Food Industry, 2023, 44(13): 1−8. (in Chinese with English abstract). doi:  10.13386/j.issn1002-0306.2022110187
Citation: ZHANG Zihao, XU Shuo, PANG Geyu, et al. In Vitro Digestive Properties of Zein Nanoparticles[J]. Science and Technology of Food Industry, 2023, 44(13): 1−8. (in Chinese with English abstract). doi:  10.13386/j.issn1002-0306.2022110187

玉米醇溶蛋白纳米颗粒的体外消化特性

doi: 10.13386/j.issn1002-0306.2022110187
基金项目: 山东省自然科学基金(ZR2019BC104)。
详细信息
    作者简介:

    张子豪(1998−),男,硕士研究生,研究方向:食品安全与营养,E-mail:1792933863@qq.com

    通讯作者:

    于少轩(1989−),女,博士,讲师,研究方向:食品安全与营养,E-mail:yusx@sdut.cn

  • 中图分类号: TS201.2

In Vitro Digestive Properties of Zein Nanoparticles

  • 摘要: 为了研究基于天然生物大分子的纳米递送体系在消化过程中物理化学性质的变化,本研究以姜黄素(Curcumin)为芯材,玉米醇溶蛋白(Zein)为壁材,通过反溶剂沉淀法制备了包埋姜黄素的玉米醇溶蛋白纳米颗粒(CZNPs),通过光谱学方法和电子显微镜对CZNPs的物化性质进行了表征,并在体外模拟消化模型中对CZNPs的消化特性进行了研究。结果表明,当姜黄素与Zein的质量比为1:40时,姜黄素的包埋率最高,为99%±1%,制得的CZNPs为球形纳米颗粒,平均粒径为118.6±0.7 nm、Zeta电位为19.9±3.79 mV,且颗粒之间出现轻微粘连。在体外模拟胃消化过程中,随着消化时间的延长,CZNPs出现明显聚集,其平均粒径增至8000 nm;且部分Zein发生降解,生成小分子量的氨基酸,同时缓慢释放出姜黄素。在后续的模拟肠消化过程中,CZNPs的聚集程度随着消化时间的延长而明显减弱,但Zein没有继续降解,姜黄素的释放也没有明显增大。因此,玉米醇溶蛋白纳米颗粒是一种比较有效的口服递送体系,可能应用于功能性食品和口服药物的开发中。
  • 图  1  Cur、C2ZNPs、ZNPs溶液的紫外-可见吸收光谱

    Figure  1.  UV visible absorption spectra of Cur, C2ZNPs and ZNPs solutions

    图  2  ZNPs和C2ZNPs的扫描电子显微镜照片

    Figure  2.  SEM images of ZNPs and C2ZNPs

    注:A:ZNPs;B:C2ZNPs。

    图  3  Cur、C2ZNPs、ZNPs的傅里叶变换中红外光谱

    Figure  3.  Fourier transform infrared spectra of Cur, C2ZNPs and ZNPs

    注:a:Cur;b:C2ZNPs;c:ZNPs。

    图  4  不同消化时间ZNPs与C2ZNPs的平均粒径

    Figure  4.  Average particle size of ZNPs and C2ZNPs at different digestive time

    注:不同小写字母表示同一消化时间不同纳米颗粒间差异显著(P<0.05),图5同;0~60 min:胃消化,90~180 min:肠消化;图5图7~图8同。

    图  5  不同消化时间点ZNPs和C2NPs的Zeta电位

    Figure  5.  Zeta potential of ZNPs and C2ZNPs at different digestive time

    图  6  模拟胃肠消化结束后ZNPs和C2ZNPs的扫描电子显微镜照片

    Figure  6.  SEM micrographs of ZNPs和C2ZNPs at the end of simulated gastrointestinal digestion

    注:A:模拟胃消化结束后ZNPs;B:模拟胃消化结束后C2ZNPs;C:模拟肠消化结束后ZNPs;D:模拟肠消化结束后C2ZNPs。

    图  7  C2ZNPs和姜黄素乙醇溶液消化不同时间后消化液中姜黄素的含量

    Figure  7.  Amount of Cur in digestive solutions of C2ZNPs and Cur ethanol solution at different digestive time

    图  8  C2ZNPs消化不同时间后消化液中氨基酸含量

    Figure  8.  Content of amino acids in digestive fluid after C2ZNPs digestion for different times

    表  1  ZNPs和CZNPs的平均粒径和Zeta电位

    Table  1.   Average diameter and Zeta potential of ZNPs and CZNPs

    样品名称ZNPsC2ZNPsC3ZNPsC4ZNPs
    平均粒径(nm)124.7±1.3d118.6±0.7c111.1±0.5b103.5±0.4a
    Zeta电位(mV)19.5±4.75b19.9±3.79b21.5±5.7b13.3±4.18a
    注:同行不同小写字母表示不同组间纳米颗粒差异显著(P<0.05);表2同。
    下载: 导出CSV

    表  2  CZNPs中姜黄素的包埋率

    Table  2.   Encapsulation efficiency of Cur in CZNPs

    样品名称C2ZNPsC3ZNPsC4ZNPs
    包埋率(%)99.00±1.0c65.07±1.4b52.00±1.5a
    下载: 导出CSV
  • [1] QIU N, DU X Y, JI J B, et al. A review of stimuli-responsive polymeric micelles for tumor-targeted delivery of curcumin[J]. Drug Development and Industrial Pharmacy,2021,47(6):1−41.
    [2] STOHS S J, CHEN O, RAY S D, et al. Highly bioavailable forms of curcumin and promising avenues for curcumin-based research and application: A review[J]. Molecules,2020,25(6):1397. doi:  10.3390/molecules25061397
    [3] ZIELINSKA A, ALVES H, MARQUES V, et al. Properties, extraction methods, and delivery systems for curcumin as a natural source of beneficial health effects[J]. Medicina,2020,56(7):336. doi:  10.3390/medicina56070336
    [4] 吕思伊, 卢琪, 潘思轶. 包封姜黄素的果胶-核桃蛋白复合物乳液稳定性及体外消化[J]. 食品科学,2021,42(8):1−9. [LÜ S Y, LU Q, PAN S Y. Stability and in vitro digestion of pectin-walnut proteins stabilized emulsions encapsulating curcumin[J]. Food Science,2021,42(8):1−9. doi:  10.7506/spkx1002-6630-20200406-069

    LÜ S Y, LU Q, PAN S Y . Stability and in vitro digestion of pectin-walnut proteins stabilized emulsions encapsulating curcumin[J]. Food Science, 2021, 42(8): 1-9. doi:  10.7506/spkx1002-6630-20200406-069
    [5] ELBIALY N S, ABOUSHOUSHAH S F, MOHAMED N. Bioinspired synthesis of protein/polysaccharide-decorated folate as a nanocarrier of curcumin to potentiate cancer therapy[J]. International Journal of Pharmaceutics,2021,5(2):613.
    [6] DARIA Z, SERGEY C, ANASTASIA K, et al. Efficiency of an oral delivery system based on a liposomal form of a combination of curcumin with a balanced amount of n-3 and n-6 PUFAs encapsulated in an electrostatic complex of WPI with chitosan[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects,2022,20(10):651.
    [7] SUN Y, PANG H W, LI Z, et al. Nanofibers-anchored small molecule hybrid plant protein materials with improved antibacterial activity[J]. Industrial Crops & Products,2022,1(10):185.
    [8] XU P C, QIAN Y X, WANG R, et al. Entrapping curcumin in the hydrophobic reservoir of rice proteins toward stable antioxidant nanoparticles[J]. Food Chemistry,2022,1(9):387.
    [9] GUARDIOLA-PONCE L V, SUDKAMP A, YIN L, et al. Characterization of zein extracted from wet distillers grains[J]. Trans-actions of the Asbe,2020,63(4):1059−1069. doi:  10.13031/trans.13764
    [10] WANG Y, PADUA G W. Nanoscale characterization of zein self-assembly[J]. Langmuir: The ACS Journal of Surfaces and Colloids,2012,28(5):2429−35. doi:  10.1021/la204204j
    [11] BROTONS-CANTO A, GONZALEZ-NAVARRO C J, GURREA J. Zein nanoparticles improve the oral bioavailability of resveratrol in humans[J]. Journal of Drug Delivery Science and Technology,2020,57(C):101704.
    [12] PATEL A R, VELIKOV K P. Zein as a source of functional colloidal nano- and microstructures[J]. Current Opinion in Colloid & Interface Science,2014,19(5):450−458.
    [13] 董潇, 黄国清, 肖军霞. 玉米醇溶蛋白-葡萄糖美拉德反应产物制备姜黄素纳米颗粒[J]. 中国食品学报,2021,21(3):118−127. [DONG X, HUANG G Q, XIAO J X. Preparation of curcumin nanoparticles by zein-glucose maillard reaction products[J]. Journal of Chinese Institute of Food Science and Technology,2021,21(3):118−127.

    DONG X, HUANG G Q, XIAO J X. Preparation of curcumin nanoparticles by zein-glucose maillard reaction products[J]. Journal of Chinese Institute of Food Science and Technology, 2021, 21(3): 118−127.
    [14] FU T J, ABBOTT U R, HATZOS C. Digestibility of food allergens and nonallergenic proteins in simulated gastric fluid and simulated intestinal fluid-A comparative study[J]. Journal of Agricultural and Food Chemistry,2002,50(24):7154−7160. doi:  10.1021/jf020599h
    [15] CHEN S, HAN Y H, HUANG J Y, et al. Fabrication and characterization of layer-by-layer composite nanoparticles based on zein and hyaluronic acid for codelivery of curcumin and quercetagetin[J]. ACS Applied Materials & Interfaces,2019,11(18):16922−16933.
    [16] LU J, XIE L, WU A X, et al. Delivery of silybin using a zein-pullulan nanocomplex: Fabrication, characterization, in vitro release properties and antioxidant capacity[J]. Colloids and Surfaces B: Biointerfaces,2022(9):217.
    [17] 周浓, 余志良, 李承勇. 玉米醇溶蛋白-番石榴黄酮复合纳米颗粒的制备及其抗氧化活性[J]. 食品科学,2021,42(3):186−193. [ZHOU N, YU Z L, LI C Y. Fabrication and antioxidant activity of zein-guava flavonoid composite nanoparticles[J]. Food Science,2021,42(3):186−193. doi:  10.7506/spkx1002-6630-20200225-270

    ZHOU N, YU Z L, LI C Y. Fabrication and antioxidant activity of zein-guava flavonoid composite nanoparticles[J]. Food Science, 2021, 42(3): 186-193. doi:  10.7506/spkx1002-6630-20200225-270
    [18] CHEN X, ZOU L Q, LIU W, et al. Potential of excipient emulsions for improving quercetin bioaccessibility and antioxidant activity: An in vitro study[J]. Journal of Agricultural and Food Chemistry,2016,64(18):3653. doi:  10.1021/acs.jafc.6b01056
    [19] ZOU L Q, ZHENG B J, LIU W, et al. Enhancing nutraceutical bioavailability using excipient emulsions: Influence of lipid droplet size on solubility and bioaccessibility of powdered curcumin[J]. Journal of Functional Foods,2015,15:72−83. doi:  10.1016/j.jff.2015.02.044
    [20] 邵金良, 黎其万, 董宝生, 等. 茚三酮比色法测定茶叶中游离氨基酸总量[J]. 中国食品添加剂,2008(2):162−165. [SHAO J L, LI Q W, DONG B S, et al. Determination of total free-am ino acid in tea by Nihydrin colorimetry[J]. Chia Food Additives,2008(2):162−165. doi:  10.3969/j.issn.1006-2513.2008.02.039

    SHAO J L, LI Q W, DONG B S, et al. Determination of total free-am ino acid in tea by Nihydrin colorimetry[J]. Chia Food Additives, 2008(2): 162-165. doi:  10.3969/j.issn.1006-2513.2008.02.039
    [21] 李晓晖, 黄文娟, 周伟, 等. 反溶剂法制备姜黄素-高粱醇溶蛋白复合颗粒及其特性分析[J]. 食品科学,2018,39(6):7−12. [LI X H, HUANG W J, ZHOU W, et al. Preparation and characterization of kafirin microparticles encapsulating curcum by anti-solvent method[J]. Food Science,2018,39(6):7−12. doi:  10.7506/spkx1002-6630-201806002

    LI X H, HUANG W J, ZHOU W, et al. Preparation and characterization of kafirin microparticles encapsulating curcum by anti-solvent method[J]. Food Science, 2018, 39(6): 7-12. doi:  10.7506/spkx1002-6630-201806002
    [22] ZHANG H, JIANG L Y, TONG M G, et al. Encapsulation of curcumin using fucoidan stabilized zein nanoparticles: Preparation, characterization, and in vitro release performance[J]. Journal of Molecular Liquids,2021,369:115586.
    [23] PATEL A, HU Y C, TIWARI J K, et al. Synthesis and characterisation of zein-curcumin colloidal particles[J]. Soft Matter,2010,6(24):6192−6199. doi:  10.1039/c0sm00800a
    [24] 邓罡, 李晓佩, 王际辉. 酸性溶液中姜黄素的紫外-可见和荧光发射光谱研究[J]. 光谱学与光谱分析,2018,38(S1):257−258. [DENG G, LI X P, WANG J H. UV-Vis and fluorescence emission spectra of curcumin in acidic solutions[J]. Spectroscopy and Spectral Analtsis,2018,38(S1):257−258.

    DENG G, LI X P, WANG J H. UV-Vis and fluorescence emission spectra of curcumin in acidic solutions[J]. Spectroscopy and Spectral Analtsis, 2018, 38(S1): 257-258.
    [25] 饶震红, 王明安, 张莉. 基于光谱分析技术的肉桂醛与玉米醇溶蛋白作用机理的研究[J]. 光谱学与光谱分析,2019,39(6):1940−1946. [RAO Z H, WANG M A, ZHANG L. Study on the mechanism of interaction between cinnamaldehyde and zein based on spectral analysis technology[J]. Spectroscopy and Spectral Analtsis,2019,39(6):1940−1946.

    RAO Z H, WANG M A, ZHANG L. Study on the mechanism of interaction between cinnamaldehyde and zein based on spectral analysis technology[J]. Spectroscopy and Spectral Analtsis, 2019, 39(6): 1940-1946.
    [26] LIU F G, MA C C, MCCLEMENTS D J, et al. A comparative study of covalent and non-covalent interactions between zein and polyphenols in ethanol-water solution[J]. Food Hydrocolloids,2017,63:625−634. doi:  10.1016/j.foodhyd.2016.09.041
    [27] 林嘉璐, 吴敏, 欧阳, 等. 不同类型壁材微胶囊的胃肠道模拟消化研究概述[J]. 轻工科技,2020,36(6):4−5, 9. [LIN J L, WU M, OU Y, et al. Summary of gastrointestinal simulated digestion of different types of wall material microcapsules[J]. Light Industry Science and Technolog,2020,36(6):4−5, 9.

    LIN J L, WU M, OU Y, et al. Summary of gastrointestinal simulated digestion of different types of wall material microcapsules[J]. Light Industry Science and Technolog, 2020, 36(6): 4-5, 9.
    [28] YADAV D, KUMAR N. Nanonization of curcumin by antisolvent precipitation: Process development, characterization, freeze drying and stability performance[J]. International Journal of Pharmaceutics,2014,477(1−2):564−577. doi:  10.1016/j.ijpharm.2014.10.070
    [29] CERQUEIRA M A, SOUZA B W S, TEIXEIRA J A. et al. Effect of glycerol and corn oil on physicochemical properties of polysaccharide films: A comparative study[J]. Food Hydrocolloids,2011,27(1):175−184.
    [30] LUO Y C, TENG Z, WANG Q. Development of zein nanoparticles coated with carboxymethyl chitosan for encapsulation and controlled release of vitamin D3[J]. Journal of Agricultural and Food Chemistry,2012,60(3):836−43. doi:  10.1021/jf204194z
    [31] 张凤雪, 文娥, 李柯翱, 等. 维药制剂药渣中蛋白质及游离氨基酸的含量测定[J]. 世界中医药,2016,11(2):327−329. [ZHANG F X, WEN E, LI K A, et al. Determination of protein and free amino acid within the residues of uygur medicine[J]. World Chinese Medicine,2016,11(2):327−329. doi:  10.3969/j.issn.1673-7202.2016.02.039

    ZHANG F X, WEN E, LI K A, et al. Determination of protein and free amino acid within the residues of uygur medicine[J]. World Chinese Medicine, 2016, 11(2): 327-329. doi:  10.3969/j.issn.1673-7202.2016.02.039
    [32] HU K, MCCLEMENTS D J. Fabrication of surfactant-stabilized zein nanoparticles: A pH modulated antisolvent precipitation method[J]. Food Research International,2014,64:329−335. doi:  10.1016/j.foodres.2014.07.004
    [33] 王永辉, 杨晓泉, 王金梅, 等. 蛋白水解物及多糖负载姜黄素制备纳米颗粒及其稳定性[J]农业工程学报, 2015(10): 296−302

    WANG Y H, YANG X Q, WANG J M, et al. Preparation of curcumin nanoparticles by protein hydrolysates and polysaccharids and its stabilization[J]. Transactions of the Chinese Society of Agricultural Engineering, 2015(10): 296−302
    [34] 赖婵娟, 吴磊燕, 胡林芳, 等. 不同溶剂中玉米醇溶蛋白的聚集状态和结构性质[J]. 现代食品科技,2021,37(6):115−123. [LAI C J, WU L Y, HU L F, et al. Aggregation state and structural properties of zein in different solvents[J]. Modern Food Science and Technology,2021,37(6):115−123. doi:  10.13982/j.mfst.1673-9078.2021.6.0258

    LAI C J, WU L Y, HU L F, et al. Aggregation state and structural properties of zein in different solvents[J]. Modern Food Science and Technology, 2021, 37(6): 115-123. doi:  10.13982/j.mfst.1673-9078.2021.6.0258
    [35] 许辰琪, 袁芳, 高彦祥. 玉米醇溶蛋白作为传递载体研究进展[J]. 中国食品添加剂,2015,7:156−161. [XU C Q, YUAN F, GAO Y X. Research progress of carrier material zein in delivery system[J]. Chia Food Additives,2015,7:156−161. doi:  10.3969/j.issn.1006-2513.2015.07.018

    XU C Q, YUAN F, GAO Y X. Research progress of carrier material zein in delivery system[J]. Chia Food Additives, 2015, 7, 156-161. doi:  10.3969/j.issn.1006-2513.2015.07.018
    [36] ZOU L, ZHENG B, ZHANG R, et al. Enhancing the bioaccessibility of hydrophobic bioactive agents using mixed colloidal dispersions: Curcumin-loaded zein nanoparticles plus digestible lipid nanoparticles[J]. Food Research International,2016,81(3):74−82.
    [37] 胡玲, 张裕英, 高长有. 聚合物纳米粒子的结构和性能对胞吞和细胞功能的影响[J]. 化学进展,2009,21(6):1254−1267. [HU L, ZHANG Y Y, GAO C Y. Influence of structures and properties of polymer nanoparticles on their cellular uptake and cell functions[J]. Progress in Chemistry,2009,21(6):1254−1267.

    HU L, ZHANG Y Y, GAO C Y. Influence of structures and properties of polymer nanoparticles on their cellular uptake and cell functions[J]. Progress in Chemistry, 2009, 21(6): 1254-1267.
    [38] ZHANG D C, JIANG F Y, LIANG J H, et al. Delivery of curcumin using a zein-xanthan gum nanocomplex: Fabrication, characterization, and in vitro release properties[J]. Colloids and Surfaces B:Biointerfaces,2021,204:111827. doi:  10.1016/j.colsurfb.2021.111827
    [39] 唐文婷, 孙玥, 孙庆杰, 等. 兼具抗氧化及抗菌活性的玉米醇溶蛋白肽制备及其乳化特性[J]. 食品科学,2022,43(11):57−66. [TANG W T, SUN Y, SUN Q J. et al. Preparation and emulsifying properties of zein peptides with antioxidant and antibacterial activities[J]. Food Science,2022,43(11):57−66. doi:  10.7506/spkx1002-6630-20210504-024

    TANG W T, SUN Y, SUN Q J . et al. Preparation and emulsifying properties of zein peptides with antioxidant and antibacterial activities[J]. Food Science, 2022, 43(11): 57-66. doi:  10.7506/spkx1002-6630-20210504-024
    [40] 芦鑫, 胡东彬, 贾聪, 等. 体外模拟消化芝麻蛋白产生多肽的抗氧化性分析[J]. 中国油脂,2020,45(5):63−66, 81. [LU X, HU D B, JIA C, et al. Antioxidant analysis of peptides produced by in vitro simulated digestion of sesame protein[J]. China Oils and Fats,2020,45(5):63−66, 81. doi:  10.12166/j.zgyz.1003-7969/2020.05.013

    LU X, HU D B, JIA C, et al. Antioxidant analysis of peptides produced by in vitro simulated digestion of sesame protein[J]. China Oils and Fats, 2020, 45(5): 63-66, 81. doi:  10.12166/j.zgyz.1003-7969/2020.05.013
  • 加载中
图(8) / 表(2)
计量
  • 文章访问数:  51
  • HTML全文浏览量:  31
  • PDF下载量:  8
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-11-17
  • 网络出版日期:  2023-05-20
  • 刊出日期:  2023-07-01

目录

    /

    返回文章
    返回