• 食品科学与工程领域高质量科技期刊分级目录第一方阵T1
  • Scopus
  • FSTA
  • 北大核心期刊
  • 中国核心学术期刊RCCSE
  • DOAJ
  • JST China
  • 中国精品科技期刊
  • 中国农业核心期刊
  • CA
  • WJCI
  • 中国科技核心期刊CSTPCD
  • 中国生物医学SinoMed
中国精品科技期刊2020 食品青年科学家峰会

多糖添加对兔肌原纤维蛋白Pickering乳液稳定性及凝胶特性的影响

薛山 罗娟

薛山,罗娟. 多糖添加对兔肌原纤维蛋白Pickering乳液稳定性及凝胶特性的影响[J]. 新宝登录入口(中国)有限公司,2023,44(13):21−29. doi:  10.13386/j.issn1002-0306.2022110340
引用本文: 薛山,罗娟. 多糖添加对兔肌原纤维蛋白Pickering乳液稳定性及凝胶特性的影响[J]. 新宝登录入口(中国)有限公司,2023,44(13):21−29. doi:  10.13386/j.issn1002-0306.2022110340
XUE Shan, LUO Juan. Effect of Polysaccharide Addition on the Stability and Gel Properties of Rabbit Myofibrillar Pickering Emulsion[J]. Science and Technology of Food Industry, 2023, 44(13): 21−29. (in Chinese with English abstract). doi:  10.13386/j.issn1002-0306.2022110340
Citation: XUE Shan, LUO Juan. Effect of Polysaccharide Addition on the Stability and Gel Properties of Rabbit Myofibrillar Pickering Emulsion[J]. Science and Technology of Food Industry, 2023, 44(13): 21−29. (in Chinese with English abstract). doi:  10.13386/j.issn1002-0306.2022110340

多糖添加对兔肌原纤维蛋白Pickering乳液稳定性及凝胶特性的影响

doi: 10.13386/j.issn1002-0306.2022110340
基金项目: 闽南师范大学博士科研启动基金(2006L21513);2021福建省自然科学基金项目(青年创新)(2021J05198),福建省科技特派员(团队)项目(19SKTP02, SKTP2003, SKTP2120);漳州市科技特派员(团队)项目(20210100-44);2021年漳州市自然科学基金项目(ZZ2021J07);闽南师范大学校内高级别项目(MSGJB2021021);校企合作项目(4206/A92054);校企合作项目(4206/A921J3);校企合作项目(4206/A92250)
详细信息
    作者简介:

    薛山(1988−),女,博士,副教授,研究方向:食品科学,E-mail:yixuanchenglion@sina.com

  • 中图分类号: TS201.2

Effect of Polysaccharide Addition on the Stability and Gel Properties of Rabbit Myofibrillar Pickering Emulsion

  • 摘要: 本研究提取兔肉肌原纤维蛋白(Rabbit Myofibrillar Protein,RMP),以大豆油为油相制备Pickering乳液及乳液凝胶,考察不同pH环境(3~10)、不同浓度卡拉胶(0.25%~0.50%)和海藻酸钠(0.25%~0.50%)添加对Pickering乳液稳定性及其凝胶特性的影响,以期利用RMP制备高稳定性Pickering乳液凝胶。结果表明:当pH为9时,RMP乳液的ζ-电位绝对值最大(33.60 mV);在pH为9,油相体积50%,卡拉胶和海藻酸钠多糖添加浓度均为0.35%时,RMP-Pickering乳液的ζ-电位绝对值(72.97±0.60)、乳化指数(Emulsifying Activity Index,EAI)(5.09±0.09 m2·g−1)和乳化稳定指数(Emulsifying Stability Index,ESI)(46.07%±3.74%)均达到最大值;在多糖浓度0.25%~0.35%范围内时,卡拉胶和海藻酸钠添加的RMP-Pickering乳液凝胶的持水性、硬度和弹性均逐渐升高,二者均在添加浓度0.35%时达到最大值,且当多糖浓度在0.35%~0.50%范围内时,海藻酸钠-RMP乳液凝胶较卡拉胶-RMP乳液凝胶具有更低的硬度和更高的持水性与弹性;红外光谱分析显示随着多糖浓度的增加,两种多糖稳定的RMP乳液凝胶β-折叠含量均呈现先增加后减少的趋势,蛋白质二级结构由无序变得有序,在两种多糖浓度均为0.35%时,β-折叠含量达到最大值(卡拉胶:30.34%±0.04%,海藻酸钠:29.70%±0.12%);由宏微观结构及凝胶作用力分析可知,疏水相互作用和二硫键均在卡拉胶-和海藻酸钠-RMP Pickering乳液凝胶维持凝胶结构中发挥了作用。综上,当卡拉胶和海藻酸钠的终浓度均为0.35%时,能够使多糖-RMP-Pickering乳液体系分布更加均匀,不易发生聚集,且能够进一步形成具有良好质构特性的乳液凝胶。
  • 图  1  不同浓度多糖-RMP Pickering乳液凝胶的乳化性

    Figure  1.  Emulsification of different concentrations of polysaccharides-RMP Pickering emulsion gels

    注:不同字母表示同种凝胶指标差异显著(P<0.05);图2图3同。

    图  2  不同浓度多糖-RMP Pickering乳液凝胶的乳化稳定性

    Figure  2.  Emulsifying stability of different concentrations of polysaccharides -RMP Pickering emulsion gels

    图  3  不同浓度多糖-RMP Pickering乳液凝胶的持水性

    Figure  3.  Water holding capacity of different concentrations of polysaccharides-RMP Pickering emulsion gels

    图  4  不同浓度多糖-RMP Pickering乳液凝胶红外光谱图

    Figure  4.  Infrared spectra of different concentrations of polysaccharides-RMP Pickering emulsion gels

    注:A:卡拉胶;B:海藻酸钠。

    图  5  不同浓度多糖对RMP Pickering乳液凝胶表观图像的影响

    Figure  5.  Effects of different concentrations of polysaccharides on the appearance of RMP Pickering emulsion gel

    注:1~6号样品分别为海藻酸钠浓度0.25%、0.30%、0.35%、0.40%、0.45%、0.50%;其他条件:pH9.0,油相体积为50%,卡拉胶浓度为0.35%;图6同。

    图  6  不同浓度多糖对RMP Pickering乳液凝胶微观结构的影响

    Figure  6.  Effects of different concentrations of polysaccharides on the microstructure of RMP Pickering emulsion gel

    图  7  不同缓冲液中多糖-RMP Pickering乳液凝胶的浊度

    Figure  7.  Turbidity of polysaccharides-RMP Pickering emulsion gel in different buffers

    注:A:蒸馏水;B:pH8.0 Tris-Gly缓冲液;C:B+20 g/L十二烷氨基磺酸钠;D:C+10 g/L β-硫基乙醇。

    表  1  pH环境对RMP乳液粒径和ζ-电位的影响

    Table  1.   Effects of pH on particle size and ζ-potential of RMP emulsion

    环境pH粒径(nm)ζ-电位绝对值(mV)
    3265.60±0.30e5.19±0.03f
    43972.5~4708.6a7.30±0.10e
    53966.2~4683.9a7.20±0.13e
    6255.17±0.15f20.35±0.05d
    7177.33±0.32g27.43±0.35c
    8278.22±0.31d28.10±0.10b
    9309.14±0.21c33.60±0.10a
    10331.17±0.21b28.02±0.14b
    注:同列不同字母表示差异显著(P<0.05);表1~表5同。
    下载: 导出CSV

    表  2  卡拉胶添加对RMP Pickering乳液粒径和ζ-电位的影响

    Table  2.   Effects of carrageenan addition on particle size and ζ-potential of RMP Pickering emulsion

    多糖终浓度(%)粒径(nm)ζ-电位绝对值(mV)
    0.254391.23±0.21f65.57±0.47c
    0.305374.13±0.15e66.80±0.10b
    0.356390.17±0.29d72.77±0.72a
    0.406401.23±0.25c63.83±0.41d
    0.456564.63±0.32b62.77±0.68d
    0.507208.12±0.10a60.93±0.90e
    下载: 导出CSV

    表  3  海藻酸钠添加对RMP Pickering乳液粒径和ζ-电位的影响

    Table  3.   Effects of sodium alginate addition on particle size and ζ- potential of RMP Pickering emulsion

    多糖终浓度(%)粒径(nm)ζ-电位绝对值(mV)
    0.256400.20±0.20f69.30±0.56b
    0.306500.13±0.15e71.30±1.01a
    0.356564.63±0.32d72.97±0.60a
    0.406799.17±0.15c68.77±0.91b
    0.457152.27±0.31b56.97±0.61c
    0.507208.10±0.10a51.53±1.21d
    下载: 导出CSV

    表  4  不同多糖对RMP Pickering乳液凝胶蛋白质二级结构的影响(%)

    Table  4.   Effects of different polysaccharides on the secondary structure of RMP Pickering emulsion gel protein (%)

    多糖种类多糖浓度(%)α-螺旋(%)β-折叠(%)β-转角(%)无规则卷曲(%)
    卡拉胶0.2525.51±0.03b23.46±0.10c24.75±0.10d26.28±0.07c
    0.3024.77±0.02c25.70±0.02b22.19±0.02e27.35±0.01b
    0.3523.22±0.05d30.34±0.04a21.45±0.14f28.99±0.10a
    0.4025.61±0.06b23.15±0.07d25.43±0.08b25.80±0.02e
    0.4525.75±0.02a22.75±0.03e25.31±0.01c26.18±0.02d
    0.5025.85±0.07a22.46±0.04f25.90±0.08a25.80±0.06e
    海藻酸钠0.2524.12±0.01c27.63±0.16c21.56±0.09d26.68±0.05c
    0.3023.64±0.04d29.07±0.05b20.49±0.24e26.80±0.02b
    0.3522.43±0.03e29.70±0.12a19.93±0.16f27.93±0.03a
    0.4024.64±0.03b26.09±0.01d22.73±0.02c26.55±0.01d
    0.4524.69±0.04b25.93±0.04e23.19±0.05b26.19±0.02f
    0.5025.08±0.05a24.75±0.02f23.75±0.06a26.41±0.06e
    下载: 导出CSV

    表  5  不同浓度多糖-RMP Pickering乳液凝胶质构

    Table  5.   Gel texture of different concentrations of polysaccharides-RMP Pickering emulsion

    多糖浓度(%)硬度(g)弹性(mm)
    卡拉胶0.253.15±0.01e2.46±0.19d
    0.303.66±0.02c3.15±0.09c
    0.356.11±0.01a3.68±0.05a
    0.404.59±0.01b3.48±0.03b
    0.453.57±0.01d1.85±0.01e
    0.503.06±0.01f1.82±0.01e
    海藻酸钠0.252.04±0.02f1.23±0.02d
    0.303.36±0.07c2.16±0.08b
    0.356.12±0.02a3.69±0.06a
    0.403.84±0.01b2.18±0.01b
    0.453.18±0.03d2.11±0.02c
    0.502.85±0.05e2.08±0.02c
    下载: 导出CSV
  • [1] 何琪, 董怡, 邓莎, 等. NaCl对兔肉蛋白质氧化的影响[J]. 中国调味品,2022,47(11):13−16,23. [HE Q, DONG Y, DENG S, et al. Effect of NaCl on protein oxidation of rabbit meat[J]. China Condiment,2022,47(11):13−16,23.

    HE Q, DONG Y, DENG S, et al. Effect of NaCl on protein oxidation of rabbit meat[J]. China Condiment, 2022, 47(11): 13-16, 23.
    [2] 薛山. 我国兔产业发展现状及趋势展望[J]. 肉类研究,2016,30(8):44−48. [XUE S. Present status and future trends in the development of rabbit industry in China[J]. Meat Research,2016,30(8):44−48. doi:  10.15922/j.cnki.rlyj.2016.08.009

    XUE S. Present status and future trends in the development of rabbit industry in China[J]. Meat Research, 2016, 30(8): 44-48. doi:  10.15922/j.cnki.rlyj.2016.08.009
    [3] ZOTTE A D, SZENDRŐ Z. The role of rabbit meat as functional food[J]. Meat Science,2011,88(3):319−331. doi:  10.1016/j.meatsci.2011.02.017
    [4] LI S, ZENG W, LI R, et al. Rabbit meat production and processing in China[J]. Meat Science,2018,145:320−328. doi:  10.1016/j.meatsci.2018.06.037
    [5] CHOI Y M, KIM B C. Muscle fiber characteristics, myofibrillar protein isoforms, and meat quality[J]. Livestock Science,2009,122:105−118. doi:  10.1016/j.livsci.2008.08.015
    [6] 裴志胜, 冯紫蓝, 王会博, 等. 金鲳鱼肌原纤维蛋白乳液凝胶的制备及表征[J]. 新宝登录入口(中国)有限公司,2023,44(6):1−17. [PEI Z S, FENG Z L, WANG H B, et al. Fabrication and characterization of high internal phase pickering emulsion manipulated by gel particles of soy protein[J]. Food Industry Science and Technology,2023,44(6):1−17. doi:  10.13386/j.issn1002-0306.2022050308

    PEI Z S, FENG Z L, WANG H B, et al. Fabrication and characterization of high internal phase pickering emulsion manipulated by gel particles of soy protein[J]. Food Industry Science and Technology, 2023, 44(6): 1-17. doi:  10.13386/j.issn1002-0306.2022050308
    [7] ZHANG B, MENG R, LI X L, et al. Preparation of Pickering emulsion gels based on κ-carrageenan and covalent crosslinking with EDC: Gelation mechanism and bioaccessibility of curcumin[J]. Food Chemistry,2021(1):129726.
    [8] 崔梦楠, 鹿瑶, 高彦祥, 等. 食品乳液凝胶的制备及其应用研究进展[J]. 食品科学,2019,40(3):323−329. [CUI M N, LU Y, GAO Y X, et al. A review on the preparation and application of food emulsion gels[J]. Food Science,2019,40(3):323−329. doi:  10.7506/spkx1002-6630-20171222-282

    CUI M N, LU Y, GAO Y X, et al. A review on the preparation and application of food emulsion gels[J]. Food Science, 2019, 40(3): 323-329. doi:  10.7506/spkx1002-6630-20171222-282
    [9] 刁小琴, 李曦, 孙薇婷, 等. 乳液凝胶的构建及应用研究进展[J]. 食品安全质量检测学报,2022,13(4):1036−1043. [DIAO X Q, LI X, SUN W T, et al. Research progress in the fabrication and application of emulsion gels[J]. Journal of Food Safety and Quality,2022,13(4):1036−1043. doi:  10.3969/j.issn.2095-0381.2022.4.spaqzljcjs202204003

    DIAO X Q, LI X, SUN W T, et al. Research progress in the fabrication and application of emulsion gels[J]. Journal of Food Safety and Quality, 2022, 13(4): 1036-1043. doi:  10.3969/j.issn.2095-0381.2022.4.spaqzljcjs202204003
    [10] POYATO C, ASTIASÁR N I, BARRIUSO B, et al. A new polyunsaturated gelled emulsion as replacer of pork back-fat in burger patties: Effect on lipid composition, oxidative stability and sensory acceptability[J]. LWT-Food Science and Technology,2015,62(2):1069−1075. doi:  10.1016/j.lwt.2015.02.004
    [11] 汤洋, 高成成, 张岩, 等. 多糖基颗粒稳定的Pickering 乳液凝胶研究进展[J]. 食品科学,2022,43(3):341−351. [TANG Y, GAO C C, ZHANG Y, et al. A review of literature on Pickering emulsion gels stabilized by polysaccharide-based particles[J]. Food Science,2022,43(3):341−351. doi:  10.7506/spkx1002-6630-20201030-316

    TANG Y, GAO C C, ZHANG Y, et al. A review of literature on Pickering emulsion gels stabilized by polysaccharide-based particles[J]. Food Science, 2022, 43(3): 341-351. doi:  10.7506/spkx1002-6630-20201030-316
    [12] HU B, WANG S S, LI J, et al. Assembly of bioactive peptide-chitosan nanocomplexes[J]. The Journal of Physical Chemistry B,2011,115(23):7515−7523. doi:  10.1021/jp2013557
    [13] CHEN Q, ZHENG J, XU Y, et al. Surface modification improves fabrication of Pickering high internal phase emulsions stabilized by cellulose nanocrystals[J]. Food Hydrocolloids,2017,75:125−130.
    [14] RUIZ-CAPILLAS C, HERRERO A M. Development of meat products with healthier lipid content: Vibrational spectroscopy[J]. Foods,2021,10(2):341. doi:  10.3390/foods10020341
    [15] HERRERO A M, CARMONA P, JIMÉNEZ-COLMENERO F, et al. Polysaccharide gels as oil bulking agents: Technological and structural propertie[J]. Food Hydrocolloids,2014,36(2):374−381.
    [16] PARK D, XIONG Y L, ALDERTON A L. Concentration effects of hydroxyl radical oxidizing systems on biochemical properties of porcine muscle myofibrillar protein[J]. Food Chemistry,2007,101(3):1239−1246. doi:  10.1016/j.foodchem.2006.03.028
    [17] 朱秀清, 王婵, 孙禹凡, 等. 多糖对大豆分离蛋白乳液及乳液凝胶性质影响[J]. 东北农业大学学报,2019,51(2):45−52. [ZHU X Q, WANG C, SUN Y F, et al. Effect of polysaccharides on soybean protein isolate emulsion and emulsion gel[J]. Journal of Northeast Agricultural University,2019,51(2):45−52.

    ZHU X Q, WANG C, SUN Y F, et al. Effect of polysaccharides on soybean protein isolate emulsion and emulsion gel[J]. Journal of Northeast Agricultural University, 2019, 51(2): 45-52.
    [18] KHALESI H, EMADZADEH B, KADKHODAEE R, et al. Effect of Persian gum on whey protein concentrate cold-set emulsion gel: Structure and rheology study[J]. International Journal of Biological Macromolecules,2019,125:17−26. doi:  10.1016/j.ijbiomac.2018.12.051
    [19] ZHANG Q T, TU Z C, XIAO H, et al. Influence of ultrasonic treatment on the structure and emulsifying properties of peanut protein isolate[J]. Food and Bioproducts Processing,2014,92(1):30−37. doi:  10.1016/j.fbp.2013.07.006
    [20] 江连洲, 温家煜, 王禹涵, 等. SPI凝胶颗粒制备及其Pickering高内相乳液特性研究[J]. 农业机械学报,2020,51(12):348−355. [JIANG L Z, WEN J Y, WANG Y H, et al. Fabrication and characterization of high internal phase pickering emulsion manipulated by gel particles of soy protein[J]. Transactions of the Chinese Society of Agricultural Machinery,2020,51(12):348−355. doi:  10.6041/j.issn.1000-1298.2020.12.038

    JIANG L Z, WEN J Y, WANG Y H, et al. Fabrication and characterization of high internal phase pickering emulsion manipulated by gel particles of soy protein[J]. Transactions of the Chinese Society of Agricultural Machinery, 2020, 51(12): 348-355. doi:  10.6041/j.issn.1000-1298.2020.12.038
    [21] BOUTIN C, GIROUX H J, PAQUIN P, et al. Characterization and acid-induced gelation of butter oil emulsions produced from heated whey protein dispersions[J]. International Dairy Journal,2007,17(6):696−703. doi:  10.1016/j.idairyj.2006.08.009
    [22] MAJZNER K, WROBEL T P, FEDOROWICZ A, et al. Secondary structure of proteins analyzed ex vivo in vascular wall in diabetic animals using FT-IR spectroscopy[J]. Analyst,2013,138(24):7400−7410. doi:  10.1039/c3an00455d
    [23] ZHAO H, WANG Y, LI W, et al. Effects of oligosaccharides and soy soluble polysaccharide on the rheological and textural properties of calcium sulfate-induced soy protein gels[J]. Food and Bioprocess Technology,2017,10(3):556−567. doi:  10.1007/s11947-016-1826-7
    [24] TANG C, YANG M, LIU F, et al. Stirring greatly improves transglutaminase-induced gelation of soy protein-stabilized emulsions[J]. LWT-Food Science and Technology,2013,51(1):120−128. doi:  10.1016/j.lwt.2012.11.004
    [25] SIZEMORE S, COPE S, ROY A, et al. Slow internal dynamics and charge expansion in the disordered protein CGRP: A comparison with amylin[J]. Biophysical Journal,2015,109(5):1038−1048. doi:  10.1016/j.bpj.2015.07.023
    [26] PIKABEA A, AGUIRRE G, MIRANDA J I, et al. Understanding of nanogels swelling behavior through a deep insight into their morphology[J]. Journal of Polymer Science Part A:Polymer Chemistry,2015,53(17):2017−2025. doi:  10.1002/pola.27653
    [27] JIANG Y, ZHU Y Z, LI P, et al. Gliadin/amidated pectin core-shell nanoparticles for stabilization of Pickering emulsion[J]. International Journal of Food Science and Technology,2020,55:3278−3288. doi:  10.1111/ijfs.14590
    [28] 敬雪莲, 蔡勇建, 陈碧芬, 等. 基于大豆酶解聚集体制备Pickering乳液凝胶及环境稳定性分析[J]. 食品科学,2022,43(20):7−17. [JING X L, CAI Y J, CHEN B F, et al. Analysis of environmental stability of Pickering emulsion gels prepared with insoluble soy peptide aggregates[J]. Food Science,2022,43(20):7−17. doi:  10.7506/spkx1002-6630-20211123-288

    JING X L, CAI Y J, CHEN B F, et al. Analysis of environmental stability of Pickering emulsion gels prepared with insoluble soy peptide aggregates[J]. Food Science, 2022, 43(20): 7-17. doi:  10.7506/spkx1002-6630-20211123-288
    [29] 袁华根, 施帅, 奚照寿, 等. 基于MP-KG凝胶体系研究微观结构影响质构特性的调控机制[J]. 食品科学,2022,43(16):129−134. [YUAN H G, SHI S, XI Z S, et al. Insight into the regulatory mechanism of the microstructure of myofibrillar protein-konjac glucomannan gel systems on their textural properties[J]. Food Science,2022,43(16):129−134. doi:  10.7506/spkx1002-6630-20210528-342

    YUAN H G, SHI S, XI Z S, et al. Insight into the regulatory mechanism of the microstructure of myofibrillar protein-konjac glucomannan gel systems on their textural properties[J]. Food Science, 2022, 43(16): 129-134. doi:  10.7506/spkx1002-6630-20210528-342
    [30] KUHUN K R, GNGELO L F C, CUNHA R L D. Cold-set whey protein flaxseed gum gels induced by mono or divalent salt addition[J]. Food Hydrocolloids,2011,25(5):1302−1310. doi:  10.1016/j.foodhyd.2010.12.005
    [31] 任菲. 木薯变性淀粉对乳清蛋白凝胶特性影响[D]. 济南: 齐鲁工业大学, 2017

    REN F. Effect of cassava modified starch on the gelling properties of whey protein[D]. Jinan: Qilu University of Technology, 2017.
    [32] CARBONARO M, NUCARA A. Secondary structure of food proteins by Fourier transform spectroscopy in the mid-infrared region[J]. Amino Acids,2010,38(3):679−690. doi:  10.1007/s00726-009-0274-3
    [33] ZHOU Y, ZHAO D, FOSTER T J, et al. Konjac glucomannan-induced changes in thiol/disulphide exchange and gluten conformation upon dough mixing[J]. Food Chemistry,2014,150:164−165. doi:  10.1016/j.foodchem.2013.11.001
    [34] 潘卓官, 邹怡茜, 陈海强, 等. 温-压结合处理对肌原纤维蛋白结构及凝胶特性的影响研究进展[J/OL]. 新宝登录入口(中国)有限公司: 1−20 [2023-04-06]. DOI:10.13386/j. issn1002-0306.2022060297.

    PAN Z G, ZOU Y Q, CHEN H Q, et al. Effects of high hydrostatic pressure combined with heat treatment on the structure and gel properties of myofibrillar protein: A review[J/OL]. Science and Technology of Food Industry: 1−20 [2023-04-06]. DOI: 10.13386/j.issn1002-0306.2022060297.
    [35] NICOLAI T, CHASSENIEUX C. Heat-induced gelation of casein micelles[J]. Food Hydrocolloids,2021,118(6):106755.
    [36] ZHANG H, TAN S M, GAN H M, et al. Investigation of the formation mechanism and β-carotene encapsulation stability of emulsion gels based on egg yolk granules and sodium alginate[J]. Food Chemistry,2022,400(2):134032.
    [37] 乔蕾蕾, 杨敏, 秦娟娟, 等. 酸诱导“酪蛋白胶束-海藻酸钠”乳液凝胶性质及其对原花青素的负载性能研究[J/OL]. 食品科学: 1−16 [2023-04-06]. http://kns.cnki.net/kcms/detail/11.2206.TS.20221229.1924.011.html.

    QIAO L L, YANG M, QIN J J, et al. Properties of acid-induced “micellar casein-sodium alginate” emulsion gels and their loading capacity for proanthocyanidins[J/OL]. Food Science: 1−16 [2023-04-06]. http://kns.cnki.net/kcms/detail/11.2206.TS.20221229.1924.011.html.
    [38] LIU Q, CHANG X, SHAN Y, et al. Fabrication and characterization of Pickering emulsion gels stabilized by zein/pullulan complex colloidal particles[J]. Journal of the Science of Food and Agriculture,2021,101(9):3630−3643. doi:  10.1002/jsfa.10992
    [39] LI S N, ZHANG B, LI C, et al. Pickering emulsion gel stabilized by octenylsuccinate quinoa starch granule as lutein carrier: Role of the gel network[J]. Food Chemistry,2020,305:125467.
    [40] LIN D Q, KELLY A L, MIAO S. The impact of pH on mechanical properties, storage stability and digestion of alginate-based and soy protein isolate-stabilized emulsion gel beads with encapsulated lycopene[J]. Food Chemistry,2022,372:131262. doi:  10.1016/j.foodchem.2021.131262
    [41] 王旭, 李昕, 许朵霞, 等. 大豆多糖对乳清分离蛋白-乳状液稳定性与流变特性影响[J]. 新宝登录入口(中国)有限公司,2017(19):7−12. [WANG X, LI X, XU D X, et al. Influence of soybean polysaccharide on the physical stability and rheological properties of whey protein isolate emulsion[J]. Science and Technology of Food Industry,2017(19):7−12.

    WANG X, LI X, XU D X, et al. Influence of soybean polysaccharide on the physical stability and rheological properties of whey protein isolate emulsion[J]. Science and Technology of Food Industry, 2017, (19): 7-12.
    [42] TANG C H. Effect of thermal pretreatment of raw soymilk on the gel strength and microstructure of tofu induced by microbial transglutaminase[J]. LWT-Food Science and Technology,2007,40(8):1409.
    [43] 孙雅晖, 韩立娟, 苏凌志, 等. κ-卡拉胶对蜂蜡基乳液凝胶微观结构和性质的影响[J/OL]. 食品科学: 1−15 [2023-04-06]. http://kns.cnki.net/kcms/detail/11.2206.TS.20221207.1626.027.html.

    SUN Y H, HAN L J, SU L Z, et al. Effect of κ-carrageenan on the microstructure and properties of beeswax-based emulsion gels[J/OL]. Food Science: 1−15 [2023-04-06]. http://kns.cnki.net/kcms/detail/11.2206.TS.20221207.1626.027.html.
  • 加载中
图(7) / 表(5)
计量
  • 文章访问数:  25
  • HTML全文浏览量:  25
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-12-01
  • 网络出版日期:  2023-05-20
  • 刊出日期:  2023-07-01

目录

    /

    返回文章
    返回