Effect of Polysaccharide Addition on the Stability and Gel Properties of Rabbit Myofibrillar Pickering Emulsion
-
摘要: 本研究提取兔肉肌原纤维蛋白(Rabbit Myofibrillar Protein,RMP),以大豆油为油相制备Pickering乳液及乳液凝胶,考察不同pH环境(3~10)、不同浓度卡拉胶(0.25%~0.50%)和海藻酸钠(0.25%~0.50%)添加对Pickering乳液稳定性及其凝胶特性的影响,以期利用RMP制备高稳定性Pickering乳液凝胶。结果表明:当pH为9时,RMP乳液的ζ-电位绝对值最大(33.60 mV);在pH为9,油相体积50%,卡拉胶和海藻酸钠多糖添加浓度均为0.35%时,RMP-Pickering乳液的ζ-电位绝对值(72.97±0.60)、乳化指数(Emulsifying Activity Index,EAI)(5.09±0.09 m2·g−1)和乳化稳定指数(Emulsifying Stability Index,ESI)(46.07%±3.74%)均达到最大值;在多糖浓度0.25%~0.35%范围内时,卡拉胶和海藻酸钠添加的RMP-Pickering乳液凝胶的持水性、硬度和弹性均逐渐升高,二者均在添加浓度0.35%时达到最大值,且当多糖浓度在0.35%~0.50%范围内时,海藻酸钠-RMP乳液凝胶较卡拉胶-RMP乳液凝胶具有更低的硬度和更高的持水性与弹性;红外光谱分析显示随着多糖浓度的增加,两种多糖稳定的RMP乳液凝胶β-折叠含量均呈现先增加后减少的趋势,蛋白质二级结构由无序变得有序,在两种多糖浓度均为0.35%时,β-折叠含量达到最大值(卡拉胶:30.34%±0.04%,海藻酸钠:29.70%±0.12%);由宏微观结构及凝胶作用力分析可知,疏水相互作用和二硫键均在卡拉胶-和海藻酸钠-RMP Pickering乳液凝胶维持凝胶结构中发挥了作用。综上,当卡拉胶和海藻酸钠的终浓度均为0.35%时,能够使多糖-RMP-Pickering乳液体系分布更加均匀,不易发生聚集,且能够进一步形成具有良好质构特性的乳液凝胶。
-
关键词:
- 兔肉肌原纤维蛋白 /
- 卡拉胶 /
- 海藻酸钠 /
- Pickering乳液 /
- 乳液凝胶
Abstract: In this study, rabbit myofibrillar protein (RMP) was extracted, and Pickering emulsion and the emulsion gel were prepared with soybean oil as the oil phase. The effects of different pH environment (3~10), carrageenan (0.25%~0.50%) and sodium alginate (0.25%~0.50%) on the stability and gel properties of Pickering emulsion were investigated, in order to prepare Pickering emulsion gel with high stability by using RMP. The results showed that when pH value was 9, the absolute value of ζ-potential of RMP emulsion was the largest (33.60 mV). The absolute value of ζ-potential (72.97±0.60), emulsifying activity index (EAI) (5.09±0.09 m2·g−1) and emulsifying stability index (ESI) (46.07%±3.74%) of RMP-Pickering emulsion all reached the maximum value when the oil phase volume was 50% and the concentration of carrageenan and sodium alginate polysaccharide were both 0.35% at pH9. In the range of polysaccharide concentration from 0.25% to 0.35%, the water holding capacity, hardness and elasticity of RMP-Pickering emulsion gel with carrageenan and sodium alginate added all increased gradually, and these indicators reached the maximum value at the polysaccharide concentration of 0.35%. Besides, the sodium alginate-RMP Pickering emulsion gel had lower hardness and higher water holding capacity and elasticity than carrageenan-RMP gel, in the range of polysaccharide concentration from 0.35% to 0.50%. Infrared spectrum analysis showed that, with the increase of polysaccharide concentration, the content of β-folded of the RMP Pickering emulsion gel stabilized by the two polysaccharides increased first and then decreased, and the secondary structure of proteins changed from disordered to ordered. When both concentration of polysaccharides were 0.35%, the β-folded content reached the maximum (carrageenan group: 30.34%±0.04%, sodium alginate group: 29.70%±0.12%). According to analysis of macro and micro structures and gel force, hydrophobic interaction and disulfide bond both played a role in maintaining gel structure of carrageenan- and sodium alginate-RMP Pickering emulsion gel. In conclusion, when the final concentrations of carrageenan and sodium alginate were both 0.35%, the polysaccharides-RMP-Pickering emulsion system could be distributed more evenly, and aggregation was not easy to occur, and the emulsion gel with good texture characteristics could be further formed.-
Key words:
- rabbit myofibrillar protein (RMP) /
- carrageenan /
- sodium alginate /
- Pickering emulsion /
- emulsion gel
-
图 5 不同浓度多糖对RMP Pickering乳液凝胶表观图像的影响
Figure 5. Effects of different concentrations of polysaccharides on the appearance of RMP Pickering emulsion gel
注:1~6号样品分别为海藻酸钠浓度0.25%、0.30%、0.35%、0.40%、0.45%、0.50%;其他条件:pH9.0,油相体积为50%,卡拉胶浓度为0.35%;图6同。
表 1 pH环境对RMP乳液粒径和ζ-电位的影响
Table 1. Effects of pH on particle size and ζ-potential of RMP emulsion
表 2 卡拉胶添加对RMP Pickering乳液粒径和ζ-电位的影响
Table 2. Effects of carrageenan addition on particle size and ζ-potential of RMP Pickering emulsion
多糖终浓度(%) 粒径(nm) ζ-电位绝对值(mV) 0.25 4391.23±0.21f 65.57±0.47c 0.30 5374.13±0.15e 66.80±0.10b 0.35 6390.17±0.29d 72.77±0.72a 0.40 6401.23±0.25c 63.83±0.41d 0.45 6564.63±0.32b 62.77±0.68d 0.50 7208.12±0.10a 60.93±0.90e 表 3 海藻酸钠添加对RMP Pickering乳液粒径和ζ-电位的影响
Table 3. Effects of sodium alginate addition on particle size and ζ- potential of RMP Pickering emulsion
多糖终浓度(%) 粒径(nm) ζ-电位绝对值(mV) 0.25 6400.20±0.20f 69.30±0.56b 0.30 6500.13±0.15e 71.30±1.01a 0.35 6564.63±0.32d 72.97±0.60a 0.40 6799.17±0.15c 68.77±0.91b 0.45 7152.27±0.31b 56.97±0.61c 0.50 7208.10±0.10a 51.53±1.21d 表 4 不同多糖对RMP Pickering乳液凝胶蛋白质二级结构的影响(%)
Table 4. Effects of different polysaccharides on the secondary structure of RMP Pickering emulsion gel protein (%)
多糖种类 多糖浓度(%) α-螺旋(%) β-折叠(%) β-转角(%) 无规则卷曲(%) 卡拉胶 0.25 25.51±0.03b 23.46±0.10c 24.75±0.10d 26.28±0.07c 0.30 24.77±0.02c 25.70±0.02b 22.19±0.02e 27.35±0.01b 0.35 23.22±0.05d 30.34±0.04a 21.45±0.14f 28.99±0.10a 0.40 25.61±0.06b 23.15±0.07d 25.43±0.08b 25.80±0.02e 0.45 25.75±0.02a 22.75±0.03e 25.31±0.01c 26.18±0.02d 0.50 25.85±0.07a 22.46±0.04f 25.90±0.08a 25.80±0.06e 海藻酸钠 0.25 24.12±0.01c 27.63±0.16c 21.56±0.09d 26.68±0.05c 0.30 23.64±0.04d 29.07±0.05b 20.49±0.24e 26.80±0.02b 0.35 22.43±0.03e 29.70±0.12a 19.93±0.16f 27.93±0.03a 0.40 24.64±0.03b 26.09±0.01d 22.73±0.02c 26.55±0.01d 0.45 24.69±0.04b 25.93±0.04e 23.19±0.05b 26.19±0.02f 0.50 25.08±0.05a 24.75±0.02f 23.75±0.06a 26.41±0.06e 表 5 不同浓度多糖-RMP Pickering乳液凝胶质构
Table 5. Gel texture of different concentrations of polysaccharides-RMP Pickering emulsion
多糖 浓度(%) 硬度(g) 弹性(mm) 卡拉胶 0.25 3.15±0.01e 2.46±0.19d 0.30 3.66±0.02c 3.15±0.09c 0.35 6.11±0.01a 3.68±0.05a 0.40 4.59±0.01b 3.48±0.03b 0.45 3.57±0.01d 1.85±0.01e 0.50 3.06±0.01f 1.82±0.01e 海藻酸钠 0.25 2.04±0.02f 1.23±0.02d 0.30 3.36±0.07c 2.16±0.08b 0.35 6.12±0.02a 3.69±0.06a 0.40 3.84±0.01b 2.18±0.01b 0.45 3.18±0.03d 2.11±0.02c 0.50 2.85±0.05e 2.08±0.02c -
[1] 何琪, 董怡, 邓莎, 等. NaCl对兔肉蛋白质氧化的影响[J]. 中国调味品,2022,47(11):13−16,23. [HE Q, DONG Y, DENG S, et al. Effect of NaCl on protein oxidation of rabbit meat[J]. China Condiment,2022,47(11):13−16,23.HE Q, DONG Y, DENG S, et al. Effect of NaCl on protein oxidation of rabbit meat[J]. China Condiment, 2022, 47(11): 13-16, 23. [2] 薛山. 我国兔产业发展现状及趋势展望[J]. 肉类研究,2016,30(8):44−48. [XUE S. Present status and future trends in the development of rabbit industry in China[J]. Meat Research,2016,30(8):44−48. doi: 10.15922/j.cnki.rlyj.2016.08.009XUE S. Present status and future trends in the development of rabbit industry in China[J]. Meat Research, 2016, 30(8): 44-48. doi: 10.15922/j.cnki.rlyj.2016.08.009 [3] ZOTTE A D, SZENDRŐ Z. The role of rabbit meat as functional food[J]. Meat Science,2011,88(3):319−331. doi: 10.1016/j.meatsci.2011.02.017 [4] LI S, ZENG W, LI R, et al. Rabbit meat production and processing in China[J]. Meat Science,2018,145:320−328. doi: 10.1016/j.meatsci.2018.06.037 [5] CHOI Y M, KIM B C. Muscle fiber characteristics, myofibrillar protein isoforms, and meat quality[J]. Livestock Science,2009,122:105−118. doi: 10.1016/j.livsci.2008.08.015 [6] 裴志胜, 冯紫蓝, 王会博, 等. 金鲳鱼肌原纤维蛋白乳液凝胶的制备及表征[J]. 新宝登录入口(中国)有限公司,2023,44(6):1−17. [PEI Z S, FENG Z L, WANG H B, et al. Fabrication and characterization of high internal phase pickering emulsion manipulated by gel particles of soy protein[J]. Food Industry Science and Technology,2023,44(6):1−17. doi: 10.13386/j.issn1002-0306.2022050308PEI Z S, FENG Z L, WANG H B, et al. Fabrication and characterization of high internal phase pickering emulsion manipulated by gel particles of soy protein[J]. Food Industry Science and Technology, 2023, 44(6): 1-17. doi: 10.13386/j.issn1002-0306.2022050308 [7] ZHANG B, MENG R, LI X L, et al. Preparation of Pickering emulsion gels based on κ-carrageenan and covalent crosslinking with EDC: Gelation mechanism and bioaccessibility of curcumin[J]. Food Chemistry,2021(1):129726. [8] 崔梦楠, 鹿瑶, 高彦祥, 等. 食品乳液凝胶的制备及其应用研究进展[J]. 食品科学,2019,40(3):323−329. [CUI M N, LU Y, GAO Y X, et al. A review on the preparation and application of food emulsion gels[J]. Food Science,2019,40(3):323−329. doi: 10.7506/spkx1002-6630-20171222-282CUI M N, LU Y, GAO Y X, et al. A review on the preparation and application of food emulsion gels[J]. Food Science, 2019, 40(3): 323-329. doi: 10.7506/spkx1002-6630-20171222-282 [9] 刁小琴, 李曦, 孙薇婷, 等. 乳液凝胶的构建及应用研究进展[J]. 食品安全质量检测学报,2022,13(4):1036−1043. [DIAO X Q, LI X, SUN W T, et al. Research progress in the fabrication and application of emulsion gels[J]. Journal of Food Safety and Quality,2022,13(4):1036−1043. doi: 10.3969/j.issn.2095-0381.2022.4.spaqzljcjs202204003DIAO X Q, LI X, SUN W T, et al. Research progress in the fabrication and application of emulsion gels[J]. Journal of Food Safety and Quality, 2022, 13(4): 1036-1043. doi: 10.3969/j.issn.2095-0381.2022.4.spaqzljcjs202204003 [10] POYATO C, ASTIASÁR N I, BARRIUSO B, et al. A new polyunsaturated gelled emulsion as replacer of pork back-fat in burger patties: Effect on lipid composition, oxidative stability and sensory acceptability[J]. LWT-Food Science and Technology,2015,62(2):1069−1075. doi: 10.1016/j.lwt.2015.02.004 [11] 汤洋, 高成成, 张岩, 等. 多糖基颗粒稳定的Pickering 乳液凝胶研究进展[J]. 食品科学,2022,43(3):341−351. [TANG Y, GAO C C, ZHANG Y, et al. A review of literature on Pickering emulsion gels stabilized by polysaccharide-based particles[J]. Food Science,2022,43(3):341−351. doi: 10.7506/spkx1002-6630-20201030-316TANG Y, GAO C C, ZHANG Y, et al. A review of literature on Pickering emulsion gels stabilized by polysaccharide-based particles[J]. Food Science, 2022, 43(3): 341-351. doi: 10.7506/spkx1002-6630-20201030-316 [12] HU B, WANG S S, LI J, et al. Assembly of bioactive peptide-chitosan nanocomplexes[J]. The Journal of Physical Chemistry B,2011,115(23):7515−7523. doi: 10.1021/jp2013557 [13] CHEN Q, ZHENG J, XU Y, et al. Surface modification improves fabrication of Pickering high internal phase emulsions stabilized by cellulose nanocrystals[J]. Food Hydrocolloids,2017,75:125−130. [14] RUIZ-CAPILLAS C, HERRERO A M. Development of meat products with healthier lipid content: Vibrational spectroscopy[J]. Foods,2021,10(2):341. doi: 10.3390/foods10020341 [15] HERRERO A M, CARMONA P, JIMÉNEZ-COLMENERO F, et al. Polysaccharide gels as oil bulking agents: Technological and structural propertie[J]. Food Hydrocolloids,2014,36(2):374−381. [16] PARK D, XIONG Y L, ALDERTON A L. Concentration effects of hydroxyl radical oxidizing systems on biochemical properties of porcine muscle myofibrillar protein[J]. Food Chemistry,2007,101(3):1239−1246. doi: 10.1016/j.foodchem.2006.03.028 [17] 朱秀清, 王婵, 孙禹凡, 等. 多糖对大豆分离蛋白乳液及乳液凝胶性质影响[J]. 东北农业大学学报,2019,51(2):45−52. [ZHU X Q, WANG C, SUN Y F, et al. Effect of polysaccharides on soybean protein isolate emulsion and emulsion gel[J]. Journal of Northeast Agricultural University,2019,51(2):45−52.ZHU X Q, WANG C, SUN Y F, et al. Effect of polysaccharides on soybean protein isolate emulsion and emulsion gel[J]. Journal of Northeast Agricultural University, 2019, 51(2): 45-52. [18] KHALESI H, EMADZADEH B, KADKHODAEE R, et al. Effect of Persian gum on whey protein concentrate cold-set emulsion gel: Structure and rheology study[J]. International Journal of Biological Macromolecules,2019,125:17−26. doi: 10.1016/j.ijbiomac.2018.12.051 [19] ZHANG Q T, TU Z C, XIAO H, et al. Influence of ultrasonic treatment on the structure and emulsifying properties of peanut protein isolate[J]. Food and Bioproducts Processing,2014,92(1):30−37. doi: 10.1016/j.fbp.2013.07.006 [20] 江连洲, 温家煜, 王禹涵, 等. SPI凝胶颗粒制备及其Pickering高内相乳液特性研究[J]. 农业机械学报,2020,51(12):348−355. [JIANG L Z, WEN J Y, WANG Y H, et al. Fabrication and characterization of high internal phase pickering emulsion manipulated by gel particles of soy protein[J]. Transactions of the Chinese Society of Agricultural Machinery,2020,51(12):348−355. doi: 10.6041/j.issn.1000-1298.2020.12.038JIANG L Z, WEN J Y, WANG Y H, et al. Fabrication and characterization of high internal phase pickering emulsion manipulated by gel particles of soy protein[J]. Transactions of the Chinese Society of Agricultural Machinery, 2020, 51(12): 348-355. doi: 10.6041/j.issn.1000-1298.2020.12.038 [21] BOUTIN C, GIROUX H J, PAQUIN P, et al. Characterization and acid-induced gelation of butter oil emulsions produced from heated whey protein dispersions[J]. International Dairy Journal,2007,17(6):696−703. doi: 10.1016/j.idairyj.2006.08.009 [22] MAJZNER K, WROBEL T P, FEDOROWICZ A, et al. Secondary structure of proteins analyzed ex vivo in vascular wall in diabetic animals using FT-IR spectroscopy[J]. Analyst,2013,138(24):7400−7410. doi: 10.1039/c3an00455d [23] ZHAO H, WANG Y, LI W, et al. Effects of oligosaccharides and soy soluble polysaccharide on the rheological and textural properties of calcium sulfate-induced soy protein gels[J]. Food and Bioprocess Technology,2017,10(3):556−567. doi: 10.1007/s11947-016-1826-7 [24] TANG C, YANG M, LIU F, et al. Stirring greatly improves transglutaminase-induced gelation of soy protein-stabilized emulsions[J]. LWT-Food Science and Technology,2013,51(1):120−128. doi: 10.1016/j.lwt.2012.11.004 [25] SIZEMORE S, COPE S, ROY A, et al. Slow internal dynamics and charge expansion in the disordered protein CGRP: A comparison with amylin[J]. Biophysical Journal,2015,109(5):1038−1048. doi: 10.1016/j.bpj.2015.07.023 [26] PIKABEA A, AGUIRRE G, MIRANDA J I, et al. Understanding of nanogels swelling behavior through a deep insight into their morphology[J]. Journal of Polymer Science Part A:Polymer Chemistry,2015,53(17):2017−2025. doi: 10.1002/pola.27653 [27] JIANG Y, ZHU Y Z, LI P, et al. Gliadin/amidated pectin core-shell nanoparticles for stabilization of Pickering emulsion[J]. International Journal of Food Science and Technology,2020,55:3278−3288. doi: 10.1111/ijfs.14590 [28] 敬雪莲, 蔡勇建, 陈碧芬, 等. 基于大豆酶解聚集体制备Pickering乳液凝胶及环境稳定性分析[J]. 食品科学,2022,43(20):7−17. [JING X L, CAI Y J, CHEN B F, et al. Analysis of environmental stability of Pickering emulsion gels prepared with insoluble soy peptide aggregates[J]. Food Science,2022,43(20):7−17. doi: 10.7506/spkx1002-6630-20211123-288JING X L, CAI Y J, CHEN B F, et al. Analysis of environmental stability of Pickering emulsion gels prepared with insoluble soy peptide aggregates[J]. Food Science, 2022, 43(20): 7-17. doi: 10.7506/spkx1002-6630-20211123-288 [29] 袁华根, 施帅, 奚照寿, 等. 基于MP-KG凝胶体系研究微观结构影响质构特性的调控机制[J]. 食品科学,2022,43(16):129−134. [YUAN H G, SHI S, XI Z S, et al. Insight into the regulatory mechanism of the microstructure of myofibrillar protein-konjac glucomannan gel systems on their textural properties[J]. Food Science,2022,43(16):129−134. doi: 10.7506/spkx1002-6630-20210528-342YUAN H G, SHI S, XI Z S, et al. Insight into the regulatory mechanism of the microstructure of myofibrillar protein-konjac glucomannan gel systems on their textural properties[J]. Food Science, 2022, 43(16): 129-134. doi: 10.7506/spkx1002-6630-20210528-342 [30] KUHUN K R, GNGELO L F C, CUNHA R L D. Cold-set whey protein flaxseed gum gels induced by mono or divalent salt addition[J]. Food Hydrocolloids,2011,25(5):1302−1310. doi: 10.1016/j.foodhyd.2010.12.005 [31] 任菲. 木薯变性淀粉对乳清蛋白凝胶特性影响[D]. 济南: 齐鲁工业大学, 2017REN F. Effect of cassava modified starch on the gelling properties of whey protein[D]. Jinan: Qilu University of Technology, 2017. [32] CARBONARO M, NUCARA A. Secondary structure of food proteins by Fourier transform spectroscopy in the mid-infrared region[J]. Amino Acids,2010,38(3):679−690. doi: 10.1007/s00726-009-0274-3 [33] ZHOU Y, ZHAO D, FOSTER T J, et al. Konjac glucomannan-induced changes in thiol/disulphide exchange and gluten conformation upon dough mixing[J]. Food Chemistry,2014,150:164−165. doi: 10.1016/j.foodchem.2013.11.001 [34] 潘卓官, 邹怡茜, 陈海强, 等. 温-压结合处理对肌原纤维蛋白结构及凝胶特性的影响研究进展[J/OL]. 新宝登录入口(中国)有限公司: 1−20 [2023-04-06]. DOI:10.13386/j. issn1002-0306.2022060297.PAN Z G, ZOU Y Q, CHEN H Q, et al. Effects of high hydrostatic pressure combined with heat treatment on the structure and gel properties of myofibrillar protein: A review[J/OL]. Science and Technology of Food Industry: 1−20 [2023-04-06]. DOI: 10.13386/j.issn1002-0306.2022060297. [35] NICOLAI T, CHASSENIEUX C. Heat-induced gelation of casein micelles[J]. Food Hydrocolloids,2021,118(6):106755. [36] ZHANG H, TAN S M, GAN H M, et al. Investigation of the formation mechanism and β-carotene encapsulation stability of emulsion gels based on egg yolk granules and sodium alginate[J]. Food Chemistry,2022,400(2):134032. [37] 乔蕾蕾, 杨敏, 秦娟娟, 等. 酸诱导“酪蛋白胶束-海藻酸钠”乳液凝胶性质及其对原花青素的负载性能研究[J/OL]. 食品科学: 1−16 [2023-04-06]. http://kns.cnki.net/kcms/detail/11.2206.TS.20221229.1924.011.html.QIAO L L, YANG M, QIN J J, et al. Properties of acid-induced “micellar casein-sodium alginate” emulsion gels and their loading capacity for proanthocyanidins[J/OL]. Food Science: 1−16 [2023-04-06]. http://kns.cnki.net/kcms/detail/11.2206.TS.20221229.1924.011.html. [38] LIU Q, CHANG X, SHAN Y, et al. Fabrication and characterization of Pickering emulsion gels stabilized by zein/pullulan complex colloidal particles[J]. Journal of the Science of Food and Agriculture,2021,101(9):3630−3643. doi: 10.1002/jsfa.10992 [39] LI S N, ZHANG B, LI C, et al. Pickering emulsion gel stabilized by octenylsuccinate quinoa starch granule as lutein carrier: Role of the gel network[J]. Food Chemistry,2020,305:125467. [40] LIN D Q, KELLY A L, MIAO S. The impact of pH on mechanical properties, storage stability and digestion of alginate-based and soy protein isolate-stabilized emulsion gel beads with encapsulated lycopene[J]. Food Chemistry,2022,372:131262. doi: 10.1016/j.foodchem.2021.131262 [41] 王旭, 李昕, 许朵霞, 等. 大豆多糖对乳清分离蛋白-乳状液稳定性与流变特性影响[J]. 新宝登录入口(中国)有限公司,2017(19):7−12. [WANG X, LI X, XU D X, et al. Influence of soybean polysaccharide on the physical stability and rheological properties of whey protein isolate emulsion[J]. Science and Technology of Food Industry,2017(19):7−12.WANG X, LI X, XU D X, et al. Influence of soybean polysaccharide on the physical stability and rheological properties of whey protein isolate emulsion[J]. Science and Technology of Food Industry, 2017, (19): 7-12. [42] TANG C H. Effect of thermal pretreatment of raw soymilk on the gel strength and microstructure of tofu induced by microbial transglutaminase[J]. LWT-Food Science and Technology,2007,40(8):1409. [43] 孙雅晖, 韩立娟, 苏凌志, 等. κ-卡拉胶对蜂蜡基乳液凝胶微观结构和性质的影响[J/OL]. 食品科学: 1−15 [2023-04-06]. http://kns.cnki.net/kcms/detail/11.2206.TS.20221207.1626.027.html.SUN Y H, HAN L J, SU L Z, et al. Effect of κ-carrageenan on the microstructure and properties of beeswax-based emulsion gels[J/OL]. Food Science: 1−15 [2023-04-06]. http://kns.cnki.net/kcms/detail/11.2206.TS.20221207.1626.027.html. -