Improving Effects of Epigallocatechin-3-gallate (EGCG) on Dextran Sulfate Sodium (DSS)-Induced Colitis
-
摘要: 本研究旨在探讨表没食子儿茶素没食子酸酯(Epigallocatechin-3-gallate,EGCG)对葡聚糖硫酸钠(Dextran sulfate sodium,DSS)诱导的小鼠结肠炎和肠道菌群的影响。将C57BL/6雄性小鼠分为正常对照组、肠炎模型组和EGCG处理组(50 mg/kg),每组10只,连续灌胃给药9 d。通过称取小鼠体质量,观察并记录小鼠大便黏稠度、大便出血情况,测量小鼠结肠长度和检测血清中炎症因子来评估EGCG对DSS诱导的小鼠结肠炎症的改善作用;通过分析结肠病理形态、紧密连接蛋白的表达量、肠道菌群多样性和肠道菌群结构来评估EGCG对DSS诱导的结肠炎小鼠肠道菌群的影响。结果表明,EGCG能够有效改善DSS诱导的结肠炎小鼠体质量的下降、腹泻、便血、结肠缩短等不良反应;缓解DSS诱导的小鼠结肠炎导致的全身性慢性炎症和肠道屏障损伤;改善DSS诱导的结肠炎小鼠肠道菌群紊乱,恢复肠道菌群多样性,降低厚壁菌门的相对丰度,提高拟杆菌门的相对丰度,促进有益菌Akkermansia、Alistipes和Bacteroides的增殖并抑制有害菌Desulfovibrio、Escherichia-Shigella和Helicobacter的生长。因此,EGCG通过保护肠道屏障和调节肠道菌群紊乱,从而有效改善DSS诱导的小鼠结肠炎症。
-
关键词:
- 表没食子儿茶素没食子酸酯 /
- 葡聚糖硫酸钠 /
- 结肠炎 /
- 肠道菌群
Abstract: This study aimed to investigate the effect of epigallocatechin-3-gallate (EGCG) on dextran sulfate sodium (DSS)-induced colitis and gut microbiota in mice. The C57BL/6 male mice were divided into normal control group, enteritis model group and EGCG treatment group (50 mg/kg), 10 mice in each group, and were administered orally for 9 consecutive days. The improvement effect of EGCG on DSS-induced colitis in mice was evaluated by weighing the weight of the mice, observing and recording the fecal viscosity and fecal bleeding of the mice, measuring the length of the colon in the mice and detecting inflammatory factors in the serum. The effect of EGCG on the gut microbiota of DSS-induced colitis mice was evaluated by analyzing colon pathological morphology, expression of tight junction proteins, the diversity and structure of gut microbiota. The results showed that EGCG effectively improved the adverse reactions in DSS-induced colitis mice such as weight loss, diarrhea, blood in the stool, and colon, and alleviated systemic chronic inflammation and intestinal barrier damage in DSS-induced colitis mice. Furthermore, EGCG also ameliorated the gut microbiota disturbance, restored gut microbiota diversity, decreased the relative abundance of Firmicutes, increased the relative abundance of Bacteroidetes, promoted the proliferation of beneficial bacteria such as Akkermansia, Alistipes and Bacteroides, and inhibited the growth of harmful bacteria including Desulfovibrio, Escherichia-Shigella and Helicobacter. Therefore, EGCG effectively ameliorated DSS-induced colitis in mice by protecting the intestinal barrier and regulating gut microbiota disturbance.-
Key words:
- epigallocatechin-3-gallate /
- dextran sulfate sodium /
- colitis /
- gut microbiota
-
表 1 疾病活动指数评价标准
Table 1. Scoring criteria of disease activity index
大便黏稠度 大便出血 体质量下降百分率(%) 得分 正常 正常 不变 0 轻度软便 潜血弱阳性 1~5 1 严重软便 潜血阳性 6~10 2 轻度腹泻 潜血强阳性 11~15 3 严重腹泻 显性出血 >15 4 -
[1] XAVIER R J, PODOLSKY D K. Unravelling the pathogenesis of inflammatory bowel disease[J]. Nature,2007,448(7152):427−434. doi: 10.1038/nature06005 [2] GIUFFRIDA P, CORAZZA G R, DI SABATINO A. Old and new lymphocyte players in inflammatory bowel disease[J]. Digestive Diseases and Sciences,2018,63(2):277−288. doi: 10.1007/s10620-017-4892-4 [3] KAPLAN G G. The global burden of IBD: From 2015 to 2025[J]. Nature Reviews Gastroenterology & Hepatology,2015,12(12):720−727. [4] DANESE S, FIOCCHI C, PANES J. Drug development in IBD: From novel target identification to early clinical trials[J]. Gut,2016,65(8):1233−1239. doi: 10.1136/gutjnl-2016-311717 [5] SINGH D, SRIVASTAVA S, PRADHAN M, et al. Inflammatory bowel disease: Pathogenesis, causative factors, issues, drug yreatment strategies, and delivery approaches[J]. Critical Reviews in Therapeutic Drug Carrier Systems,2015,32(3):181−214. doi: 10.1615/CritRevTherDrugCarrierSyst.2015011095 [6] KHALILI H, DE SILVA P S, ANANTHAKRISHNAN A N, et al. Dietary iron and heme iron consumption, genetic susceptibility, and risk of crohn's disease and ulcerative colitis[J]. Inflammatory Bowel Diseases,2017,23(7):1088−1095. doi: 10.1097/MIB.0000000000001161 [7] LIM J S, LIM M Y, CHOI Y, et al. Modeling environmental risk factors of autism in mice induces IBD-related gut microbial dysbiosis and hyperserotonemia[J]. Molecular Brain,2017,10:14. doi: 10.1186/s13041-017-0292-0 [8] LEE M, CHANG E B. Inflammatory bowel diseases (IBD) and the microbiome-searching the crime scene for clues[J]. Gastroenterology,2021,160(2):524−537. doi: 10.1053/j.gastro.2020.09.056 [9] BEHESHTI-MAAL A, SHAHROKH S, ANSARI S, et al. Gut mycobiome: The probable determinative role of fungi in IBD patients[J]. Mycoses,2021,64(5):468−476. doi: 10.1111/myc.13238 [10] D'ODORICO I, BELLA S D, MONTICELLI J, et al. Role of fecal microbiota transplantation in inflammatory bowel disease[J]. Journal of Digestive Diseases,2018,19(6):322−334. doi: 10.1111/1751-2980.12603 [11] LI M, WU Y, HU Y, et al. Initial gut microbiota structure affects sensitivity to DSS-induced colitis in a mouse model[J]. Science China-Life Sciences,2018,61(7):762−769. doi: 10.1007/s11427-017-9097-0 [12] SHI M, SHI Y L, LI X M, et al. Food-grade encapsulation systems for (-)-epigallocatechin gallate[J]. Molecules,2018,23(2):445. doi: 10.3390/molecules23020445 [13] GAN R Y, LI H B, SUI Z Q, et al. Absorption, metabolism, anti-cancer effect and molecular targets of epigallocatechin gallate (EGCG): An updated review[J]. Critical Reviews in Food Science and Nutrition,2018,58(6):924−941. doi: 10.1080/10408398.2016.1231168 [14] NIE J Y, ZHAO Q. Beverage consumption and risk of ulcerative colitis systematic review and meta-analysis of epidemiological studies[J]. Medicine,2017,96(49):e9070. doi: 10.1097/MD.0000000000009070 [15] PIOVANI D, DANESE S, PEYRIN-BIROULET L, et al. Environmental risk factors for inflammatory bowel diseases: An umbrella review of meta-analyses[J]. Gastroenterology,2019,157(3):647−660. doi: 10.1053/j.gastro.2019.04.016 [16] DRYDEN G W, LAM A, BEATTY K, et al. A pilot study to evaluate the safety and efficacy of an oral dose of (-)-epigallocatechin-3-gallate-rich polyphenon e in patients with mild to moderate ulcerative colitis[J]. Inflammatory Bowel Diseases,2013,19(9):1904−1912. [17] 赵悦伶, 丁健, 何佳, 等. 表没食子儿茶素没食子酸酯对葡聚糖硫酸钠诱导小鼠炎症性肠病的保护作用[J]. 浙江大学学报(农业与生命科学版),2019,45(5):626−634. [ZHAO Y, DING J, HE J, et al. Protective effect of epigallocatechin gallate on inflammatory bowel disease induced by sodium dextran sulfate in mice[J]. Journal of Zhejiang University (Agriculture and Life Sciences Edition),2019,45(5):626−634. doi: 10.3785/j.issn.1008-9209.2018.09.261ZHAO Y, DING J, HE J, et al. Protective effect of epigallocatechin gallate on inflammatory bowel disease induced by sodium dextran sulfate in mice[J]. Journal of Zhejiang University (Agriculture and Life Sciences Edition), 2019, 45(5): 626-634. doi: 10.3785/j.issn.1008-9209.2018.09.261 [18] 曾鸿哲, 方雯雯, 周方, 等. 陈年武夷岩茶对DSS诱导小鼠结肠炎的缓解作用及肠道菌群的影响[J/OL]. 食品科学: 1−14. [2023-04-20]. http://kns.cnki.net/kcms/detail/11.2206.ts.20220613.1106.087.htmlZENG H Z, FANG W W, ZHOU F, et al. Effect of aged wuyi rock tea on relieving DSS-induced colitis and gut microbiota in mice [J/OL].Food Science: 1−14. http://kns.cnki.net/kcms/detail/11.2206.ts.20220613.106.087.html [19] WU Z, HUANG S, LI T, et al. Gut microbiota from green tea polyphenol-dosed mice improves intestinal epithelial homeostasis and ameliorates experimental colitis[J]. Microbiome, 2021, 9(1): 184. [20] LI Q, CUI Y, XU B, et al. Main active components of jiawei gegen qinlian decoction protects against ulcerative colitis under different dietary environments in a gut microbiota-dependent manner[J]. Pharmacological Research,2021,170:105694. doi: 10.1016/j.phrs.2021.105694 [21] ZHOU F, ZHU M Z, TANG J Y, et al. Six types of tea extracts attenuated high-fat diet-induced metabolic syndrome via modulating gut microbiota in rats[J]. Food Research International,2022,161:111788. doi: 10.1016/j.foodres.2022.111788 [22] PARK Y H, KIM N, SHIM Y K, et al. Adequate dextran sodium sulfate-induced colitis model in mice and effective outcome measurement method[J]. Journal of Cancer Prevention,2015,20(4):260−267. doi: 10.15430/JCP.2015.20.4.260 [23] CHASSAING B, AITKEN J D, MALLESHAPPA M, et al. Dextran sulfate sodium (DSS)-induced colitis in mice[J]. Current Protocols in Immunology,2014,104:15.25.11−15.25.14. [24] PENG Y, YAN Y, WAN P, et al. Gut microbiota modulation and anti-inflammatory properties of anthocyanins from the fruits of Lycium ruthenicum Murray in dextran sodium sulfate-induced colitis in mice[J]. Free Radical Biology and Medicine,2019,136:96−108. doi: 10.1016/j.freeradbiomed.2019.04.005 [25] WU H, RAO Q, MA G C, et al. Effect of triptolide on dextran sodium sulfate-induced ulcerative colitis and gut microbiota in mice[J]. Frontiers in Pharmacology,2020,10:1652. doi: 10.3389/fphar.2019.01652 [26] BIASI F, ASTEGIANO M, MAINA M, et al. Polyphenol supplementation as a complementary medicinal approach to treating inflammatory bowel disease[J]. Current Medicinal Chemistry,2011,18(31):4851−4865. doi: 10.2174/092986711797535263 [27] SZCZEKLIK K, OWCZAREK D, PYTKO-POLONCZYK J, et al. Proinflammatory cytokines in the saliva of patients with active and nonactive Crohn's disease[J]. Polskie Archiwum Medycyny Wewnetrznej-Polish Archives of Internal Medicine,2012,122(5):200−207. doi: 10.20452/pamw.1256 [28] BHAT A A, UPPADA S, ACHKAR I W, et al. Tight junction proteins and signaling pathways in cancer and inflammation: A functional crosstalk[J]. Frontiers in Physiology,2019,9:1942. doi: 10.3389/fphys.2018.01942 [29] GERSEMANN M, BECKER S, KUEBLER I, et al. Differences in goblet cell differentiation between Crohn's disease and ulcerative colitis[J]. Differentiation,2009,77(1):84−94. doi: 10.1016/j.diff.2008.09.008 [30] ZHOU F, LI Y L, ZHANG X, et al. Polyphenols from fu brick tea reduce obesity via modulation of gut microbiota and gut microbiota-related intestinal oxidative stress and barrier function[J]. Journal of Agricultural and Food Chemistry,2021,69(48):14530−14543. doi: 10.1021/acs.jafc.1c04553 [31] JIN S, ZHAO D, CAI C, et al. Low-dose penicillin exposure in early life decreases Th17 and the susceptibility to DSS colitis in mice through gut microbiota modification[J]. Scientific Reports,2017,7(1):43662. doi: 10.1038/srep43662 [32] NAITO Y, UCHIYAMA K, TAKAGI T. A next-generation beneficial microbe: Akkermansia muciniphila[J]. Journal of Clinical Biochemistry and Nutrition,2018,63(1):33−35. doi: 10.3164/jcbn.18-57 [33] LIU S, ZHAO W, LAN P, et al. The microbiome in inflammatory bowel diseases: From pathogenesis to therapy[J]. Protein & Cell,2021,12(5):331−345. [34] QIAN K, CHEN S, WANG J, et al. A beta-N-acetylhexosaminidase Amuc_2109 from Akkermansia muciniphila protects against dextran sulfate sodium-induced colitis in mice by enhancing intestinal barrier and modulating gut microbiota[J]. Food & Function,2022,13(4):2216−2227. [35] PARKER B J, WEARSCH P A, VELOO A C M, et al. The genus alistipes: Gut bacteria with emerging implications to inflammation, cancer, and mental health[J]. Frontiers in Immunology,2020,11:906. doi: 10.3389/fimmu.2020.00906 [36] PITUCH A, WALKOWIAK J, BANASZKIEWICZ A. Butyric acid in functional constipation[J]. Przeglad Gastroenterologiczny,2013,8(5):295−298. [37] CZAJKOWSKA A, SZPONAR B. Short chain fatty acids (SCFA), the products of gut bacteria metabolism and their role in the host[J]. Postepy Higieny I Medycyny Doswiadczalnej,2018,72:131−142. doi: 10.5604/01.3001.0011.6468 [38] ZENG S L, LI S Z, XIAO P T, et al. Citrus polymethoxyflavones attenuate metabolic syndrome by regulating gut microbiome and amino acid metabolism[J]. Science Advances,2020,6(1):6208. doi: 10.1126/sciadv.aax6208 [39] SIMPSON C A, DIAZ-ARTECHE C, ELIBY D, et al. The gut microbiota in anxiety and depression-A systematic review[J]. Clinical Psychology Review,2021,83:101943−101943. doi: 10.1016/j.cpr.2020.101943 [40] WANG F, MENG W, WANG B, et al. Helicobacter pylori-induced gastric inflammation and gastric cancer[J]. Cancer Letters,2014,345(2):196−202. doi: 10.1016/j.canlet.2013.08.016 -